Electronic Supplementary Information (ESI)

Sponge-like NiCo₂O₄/MnO₂ ultrathin nanoflakes for supercapacitor with high-rate performance and ultra-long cycle life

Gao Li,[‡] Wenyao Li,[‡] Kaibing Xu, Rujia Zou^{*}, Zhigang Chen, Junqing Hu^{*}

State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China

* Electronic mail: rjzou@dhu.edu.cn; hu.junqing@dhu.edu.cn

‡ These authors contributed equally to the work

Experimental

1. Synthesis of sponge-like NiCo₂O₄/MnO₂ ultrathin nanoflakes

All chemicals used in the experiment were analytical grade. Graphite papers acted as current collector were first cut into a size of 10 mm × 40 mm, then pretreated with acetone and deionized water, each for 5 min sonicleaning, to ensure its surface was well cleaned. Then the graphite paper with a part left as working electrode for electrodeposition was put in a homogeneous solution containing 7 ml 0.05 M Co(NO₃)₂, 7 ml 0.05 M Ni(NO₃)₂, 7 ml 0.05 M Mn(NO₃)₂ and 1 ml dimethylsulfoxide. The electrodeposition was performed in a glass cell consisting of the clean graphite paper working electrode, a graphite counter electrode and Ag/AgCl reference electrode at room temperature. The electrodeposition potential was set at -1.0 V (vs. Ag/AgCl) with an Autolab electrochemical workstation (PGSTAT302N). After electrodeposition, the graphite paper with product was carefully rinsed with deionized water and finally dried in air. Finally, the sample was put in a quartz tube and annealed at 250 °C for 2 h with a ramping rate of 1 °C min⁻¹. In average, after annealing, the loading mass is about 0.55, 0.86, 1.29 mg cm⁻² for 20, 30, 40 min of electrodeposition, respectively.

2. Characterization

As-prepared products were characterized with a D/Max-2550 PC X-ray diffractometer (XRD; Rigaku, Cu-Kα radiation), a scanning electron microscope (SEM; S-4800), a transmission electron microscope (TEM; JEM-2010F) equipped with an energy dispersive X-ray spectrometer (EDS), and an X-ray photoelectron spectroscopy (XPS; ESCALab250). The mass of the electrode

materials was weighed on an XS analytical balance (Mettler Toledo; $\delta = 0.01$ mg).

3. Electrochemical characterization

Electrochemical measurements were performed on an Autolab Electrochemical Workstation (PGSTAT302N) using a three-electrode mode in 1 M KOH as the electrolyte at room temperature. The graphite paper supported multi-component composite acted directly as the working electrode. A Pt plate and Ag/AgCl were used as the counter electrode and the reference electrode, respectively. All potentials were referred to the reference electrode. The specific capacitance [F g⁻¹] and current density [A g⁻¹] were calculated based on the mass of materials.

The specific capacitance of the electrode is calculated from the CV curves according to the following equation:

$$C = \frac{Q}{\Delta V \cdot m}$$

where C (F/g) is the specific capacitance, m (g) is the mass of the active material on the electrode, Q (C) is an average charge during charge and discharge process, and ΔV (V) is the potential window.

The galvanostatic charge-discharge (CD) capacitance is calculated from the discharge curves using the following equation.

$$C = \frac{I \cdot \Delta t}{\Delta V \cdot m}$$

where I (A), Δt (s), m (g), and ΔV (V) are the discharge current, discharge time consumed in the potential range of ΔV , mass of the active material, and the potential windows, respectively.

The energy density and power density are calculated using the following equations, respectively:

$$E = \frac{1}{2}C \cdot \Delta V^{2}$$
$$P = \frac{E}{\Delta t}$$

where E (Wh/kg) is the energy density, P (kW/kg) is the power density, C (F/g) is the capacitance, ΔV (V) is the cell potential and Δt (s) is the discharge time consumed in the potential range of ΔV .

Fig. S1 XPS spectrum of sponge-like ultrathin nanoflakes.

Fig. S2 Line-scanning of sponge-like ultrathin nanoflakes.

Fig. S3 CV curve of the graphite paper substrate compared with the ultrathin nanoflakes sample at

a scan rate of 20 mV s⁻¹.

Fig. S4 (a,b) FESEM image of the top view and side view of as-synthesized electrode with 30 min of electrodeposition, respectively. (c,d) FESEM image of the top view and side view of as-synthesized electrode with 40 min electrodeposition, respectively.

Fig. S5 Galvanostatic charge-discharge curves of the as-synthesized electrode with (a) 30 min and (b) 40 min electrochemical deposition at different current densities.

Current (A g ⁻¹)	1	2	5	10	20	30	40	50
P2 (F g ⁻¹)	681	676	668	651	626	600	580	558
P3 (F g ⁻¹)	496	487	465	438	390	345	306	266

Table. S1 Specific capacitance values of the P2 and P3 samples.

Cycling performance of NiCo₂O₄/MnO₂ and pure NiCo₂O₄ at a scan rate of 50 mV s⁻¹.