Facile preparation of Cu-Mn/CeO₂/SBA-15 catalysts using ceria as auxiliary for advanced oxidation processes

Jianwei Fan ^{a, b,} *, Xu Jiang ^a, Hongyang Min ^a, Dandan Li ^a, Xianqiang Ran^{a, c}, Liyin Zou^c, Yu Sun^c, Wei Li ^b, Jianping Yang^a, Wei Teng ^{a,} *, Guangming Li ^a, Dongyuan Zhao ^b

^a College of Environmental Science and Engineering, State Key Laboratory of

Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, P. R.

China

^b Department of Chemistry, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, P. R. China

^c Research and Development Department, Shanghai Tongji Clearon Environmental-

Protection Equipment Engineering Co., Ltd, Shanghai 200092, P. R. China

Postal address: No. 1239, Siping Road, Shanghai, P. R. China 200092

Telephone number: +86-21-65982658

Fax number: +86-21-65985157

*E-mail address: <u>fanjianwei@tongji.edu.cn</u> (Dr. Jianwei Fan)

wteng@tongji.edu.cn (Dr. Wei Teng)

Synthesis of pristine SBA-15

Ordered mesoporous silica SBA-15 was prepared according to the literature reported previously. Typically, 4.0 g of Pluronic P123 was dissolved in 150 mL 1.6 M hydrochloric acid solution at 40 °C, followed by the addition of 8.4 g of TEOS. After being stirred for 24 h, the mixture was transferred into a drying oven and aged at 100 °C for 24 h. Then, the white precipitate was collected by filtration and dried at 80 °C. The product was obtained by removing the template in a muffle furnace at 550 °C for 5 h.

Figure S1. SEM images of trimetallic oxides nanoparticles loaded SBA-15 catalysts at different calcination temperatures Cu-Mn/CeO₂/SBA-15-400 (a) and Cu-Mn/CeO₂/SBA-15-500 (b).

Figure S2. TEM (a, b) and HRTEM images (c, d, inset in c and d) of trimetallic oxides nanoparticles loaded SBA-15 catalysts at different calcination temperatures Cu-Mn/CeO₂/SBA-15-400 (a, c), and Cu-Mn/CeO₂/SBA-15-500 (b, d).

Figure S3. TEM (a) and HRTEM images (b, inset in b) of the monometallic oxide loaded $CeO_2/SBA-15$ sample.

Figure S4. EDX spectra of trimetallic oxides loaded SBA-15 catalyst Cu-Mn/CeO₂/SBA-15-300 calcinated at 300 °C.

Figure S5. The STEM image (a) and mapping spectra of Cu, Mn, and Ce of trimetallic oxides loaded SBA-15 catalyst Cu-Mn/CeO₂/SBA-15-300 calcinated at 300 °C.

Figure S6. Wide-angle XRD patterns (A) of trimetallic oxides nanoparticles loaded SBA-15 catalysts at different calcination temperatures Cu-Mn/CeO₂/SBA-15-300 (a), Cu-Mn/CeO₂/SBA-15-400 (b), and Cu-Mn/CeO₂/SBA-15-500 (c) and (B) bimetallic oxides loaded SBA-15 catalyst Cu-Mn/SBA-15, respectively.

Figure S7. Effects of the different calcination temperatures of trimetallic oxides nanoparticles loaded SBA-15 catalysts Cu-Mn/CeO₂/SBA-15 at 300, 400 and 500 °C on the degradation of RhB. ($C_{catalyst} = 0.2 \text{ g/L}$, $C(H_2O_2) = 0.4 \text{ moL/L}$, T = 70 °C, pH = 3.0)

Figure S8. Effects of catalyst dosage by using trimetallic oxides loaded SBA-15 catalyst Cu-Mn/CeO₂/SBA-15-300 calcinated at 300 °C on the degradation of RhB $(C(H_2O_2) = 0.4 \text{ moL/L}, T = 70 °C, pH 3.0).$

Figure S9. Effects of hydrogen peroxide concentration by using trimetallic oxides loaded SBA-15 catalyst Cu-Mn/CeO₂/SBA-15-300 calcinated at 300 °C on the degradation of RhB ($C_{catalyst} = 0.2 \text{ g/L}$, T = 70 °C, pH 3.0).

Figure S10. Effects of reaction temperature by using trimetallic oxides loaded SBA-

15 catalyst Cu-Mn/CeO₂/SBA-15-300 calcinated at 300 °C on the degradation of RhB(C(H₂O₂) = 40 mL/L, $C_{catalyst}$ = 0.2 g/L, pH 3.0).

Figure S11. Effects of initial pH values by using trimetallic oxides loaded SBA-15 catalyst Cu-Mn/CeO₂/SBA-15-300 calcinated at 300 $^{\circ}$ C on the degradation of RhB.

 $(C_{catalyst} = 0.2 \text{ g/L}, C(H_2O_2) = 0.4 \text{ moL/L}, T = 70 \text{ °C})$

Figure S12. Time-dependant decolorization efficiency of RhB by using different reaction system: 0.2 g/L pure-silica SBA-15(a), bulk Cu-Mn-Ce oxides (b), 0.2 g/L Cu-Mn/SBA-15 (c), 0.2 g/L CeO₂/SBA-15 (d), and 0.2 g/L Cu-Mn/CeO₂/SBA-15-300(e), respectively (T = 70 °C, pH = 3.0).

Figure S13. Reusability study of Cu-Mn/CeO₂/SBA-15-300 ($C_{catalyst} = 0.2$ g/L,

 $C(H_2O_2) = 0.4 \text{ moL/L}, T = 70 \text{ °C}, pH=3).$

 Table S1. Element contents of trimetallic oxides loaded catalyst Cu-Mn/CeO₂/SBA

 15-300 obtained from EDX results.

Element	O K	Si K	Mn K	Cu K	Ce L
Weight percentage (%)	34.11	17.84	3.43	5.41	39.21
Atom percentage (%)	66.74	19.88	1.95	2.67	8.76