
SUPPORTING INFORMATION

Enhanced thermoelectric properties of the *n*-type Magnéli phase WO_{2.90}: Reduced thermal conductivity through microstructure engineering

Gregor Kieslich^{*a*}, Ulrich Burkhardt^{*b*}, Christina S. Birkel^{c,d}, Igor Veremchuk^{*b*}, Jason E. Douglas ^{*c,e*}, Michael W. Gaultois^{*c,d*}, Ingo Lieberwirth^{*f*}, Ram Seshadri^{*c,d,e*}, Galen D. Stucky^{*c,d*}, Yuri Grin^{*b**}, and Wolfgang Tremel^{*a**}

SI-Figure 1. Temperature dependence of the thermal diffusivities of the reference sample (black) and the samples containing Ta_2O_5 (blue).

SI-Table 1. Densities of the reference sample $WO_{2.90}$ and the Ta_2O_5 containing samples. Densities were obtained on polished pellets with a diameter of 20 mm using Archimedes principle. The theoretical density is 7.17 g cm⁻³, (Ref. 43). For the calculation of the thermal conductivity, a relative density of 97% was assumed for all samples.

Sample	Absolute	Relative
	density (g cm ⁻³)	density
WO _{2.90} (reference)	6.7	96%
3%Ta ₂ O ₅ -WO _{2.90}	7.0	98%
4%Ta ₂ O ₅ -WO _{2.90}	7.0	98%
5%Ta ₂ O ₅ -WO _{2.90}	6.7	96%