Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2014

2 Facile and Green Synthesis of Surfactant-Free ${ }_{3} \mathrm{Au}$ Clusters/Reduced Graphene Oxide ${ }_{4}$ Composite as Efficient Electrocatalyst for ${ }_{5}$ Oxygen Reduction Reaction

6 Shengjie Xu, Peiyi Wu*
7 Laboratory of Advanced Materials, State Key Laboratory of Molecular Engineering

8 of Polymers, Department of Macromolecular Science, Fudan University, Shanghai,

9 200433, P. R. China.

11 Fig. S1 TEM image of Au clusters prepared with DMF.

2 Fig. S2 Raman spectra of GO, RGO, and Au clusters/RGO composite prepared with

3 CA.

4

6 Fig. S3 EDS patterns of Au clusters/RGO composites prepared with different agents:
7 (a) CA, (b) AA, (c) $\mathrm{N}_{2} \mathrm{H}_{4} / \mathrm{NH}_{3}$, and (d) DMF. The inset shows the SEM image of
8 selected area for EDS and the contents of different elements (C, O, N, and Au).

2 Fig. S4 FTIR spectra of Au clusters and Au clusters/RGO composites prepared with
$3 \mathrm{CA}, \mathrm{AA}_{2} \mathrm{H}_{4} / \mathrm{NH}_{3}$ and DMF.

4

5

7 Fig. S5 CV curve of RGO reduced by CA in O_{2} saturated 0.1 M KOH solution.
8

9

Fig. S6 (a) TEM image of Au clusters/RGO composites (CA) prepared with different

11 ratio of Au cluster: RGO. (a) 1:1; (b) 2.5:1 and (c) 4:1.

2 Fig. S7 CV curves of Au clusters/RGO composites directly prepared in DMF solution

3 at $140{ }^{\circ} \mathrm{C}$; (b) and (c) CV curves of Au clusters/RGO composites prepared with
$4 \mathrm{~N}_{2} \mathrm{H}_{4} / \mathrm{NH}_{3}$ and ascorbic acid (AA). All the ratio of Au clusters: RGO are 5:1.

$$
\text { Potential(V vs } \mathrm{Ag} / \mathrm{AgCl})
$$

6 Fig. S8 The dependence of n value for Au clusters/RGO composite (CA) on the 7 potential.

Potential (V vs Ag/AgCl)
9 Fig. S9 Comparison of the electrochemical stability of commercial Pt / C and Au

1 clusters/RGO composite prepared with CA by continuous cyclic voltammetry in $\mathrm{O}_{2^{-}}$ 2 saturated 0.1 M KOH solution

3
Table S1. Tentative band assignments of DMF protected Au clusters

Wavenumber $\left(\mathrm{cm}^{-1}\right)$	Assignment
1719	$v(\mathrm{C}=\mathrm{O})$ of carboxylic acid group
1651	amide I
1557	amide II
1441,1342	$v(\mathrm{C}-\mathrm{H})$
1403	$v(\mathrm{C}-\mathrm{N})$ and CH_{3} deformation
1252,1178	$v(\mathrm{C}-\mathrm{O})$
1057,1037	$v(\mathrm{C}-\mathrm{N})$ and $v(\mathrm{C}-\mathrm{H})$
939	$v(\mathrm{C}-\mathrm{C})$

4

5
6

