Supplementary Material (ESI) for Journal of Materials Chemistry A

High Lithium Electroactivity of Boron-doped Hierarchical Rutile Submicrospheres TiO₂

Huajun Tian, Fengxia Xin, Xiaojian Tan and Weiqiang Han*

Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences,

No. 1219 Zhongguan West Road, Zhenhai District, Ningbo, Zhejiang 315201 P.R.China.

* Corresponding author: Weiqiang Han, E-mail: <u>hanweiqiang@nimte.ac.cn</u>

Supplementary Figure & Table:

Figure S1. XRD patterns of the rutile samples prepared for different calcination temperature.

When the $TiCl_4$ was added dropwise into the deionized water continuously, the following reactions would occur:

 $\begin{aligned} TiCl_4 + H_2O &\to TiOH^{3+} + H^+ + 4Cl^- - - - - - (1) \\ TiOH^{3+} &\to TiO^{2+} + H^+ - - - - - - - - (2) \\ TiO^{2+} + H_2O &\to TiO_2 + 2H^+ - - - - - - - - (3) \end{aligned}$

In addition,

Obviously, the addition of boric acid increases the acidity of the reaction solution. Cheng et al. indicated that increasing the acidity in reaction medium favored of the formation for rutile type

 TiO_2 .[1] Chen et al. also found that The doping of boron could efficiently inhibit the grain growth and facilitate the anatase-to-rutile transformation prior to the formation of diboron trioxide phase. [2]Therefore, the samples prepared by the facial method could facilitate the formation of rutile type boron-doped TiO₂. This is in agreement with results of the XRD patterns.

Alternatively, during the aging of TiCl₄ aqueous sol, the complex of $[Ti(OH)_nCl_m]^{2-}$ (n+m=6) would form. [1]Yoon et al. also successfully synthesized hollow core shell mesoporous TiO₂ spheres by a hydrothermal reaction without surfactant, followed by calcination at 500 °C. It was pointed out that, TiCl₄ formed a complex $[Ti(OH)_nCl_m]^{2-}$ (n+m=6) in the hydrothermal process, which on hydrolysis produced TiO₂ embryos that acted as seed for the growth of TiO₂. The linkage between the $[Ti(OH)_4Cl_2]^{2-}$ complex and TiO₂ embryos takes place by a dehydration reaction. As a result, the connection of TiO₂ nanoparticles and/or formation of mesopores occur in the TiO₂ samples.[3]

[1] Humin Cheng, Jiming Ma, Zhenguo Zhao, and Limin Qi. Chem. Mater. 1995, 7, 663-671

[2] Daimei Chen, Dong Yang, Qun Wang, and Zhongyi Jiang, Ind. Eng. Chem. Res. 2006, 45, 4110-4116

[3] Sukeun Yoon and Arumugam Manthiram. J. Phys. Chem. C 2011, 115, 9410-9416

Calcinated temp., °C	Crystal phase	Crystallite size, nm
untreated	Rutile	8.7
310	Rutile	11.1
410	Rutile	14.5
510	Rutile	15.1
610	Rutile	36.8
710	Rutile	44.5
810	Rutile	86.8

Table S1 Crystallite and particle sizes obtained from XRD results for '	TiO ₂ particles
calcined at various temperatures	

Their average crystallite sizes were calculated from the broadening of the (110) XRD peak of the rutile phase, according to the Scherrer formula:

$$D = \frac{k\lambda}{\beta\cos\theta}$$

where D is the crystal size, λ the X-ray wavelength (1.5418Å), β the full width at half maximum (FWHM) of the diffraction peak and θ is the diffraction angle. From the FigureS1 and Table S1, at higher calcination temperatures, the crystallites formed are larger in size, which can be attributed to the thermally promoted crystallite growth.