Supplementary Information

Imidzaolium ionic liquid-modified fibrous silica microspheres loaded with gold nanoparticles and their enhanced catalytic activity and reusability for the reduction

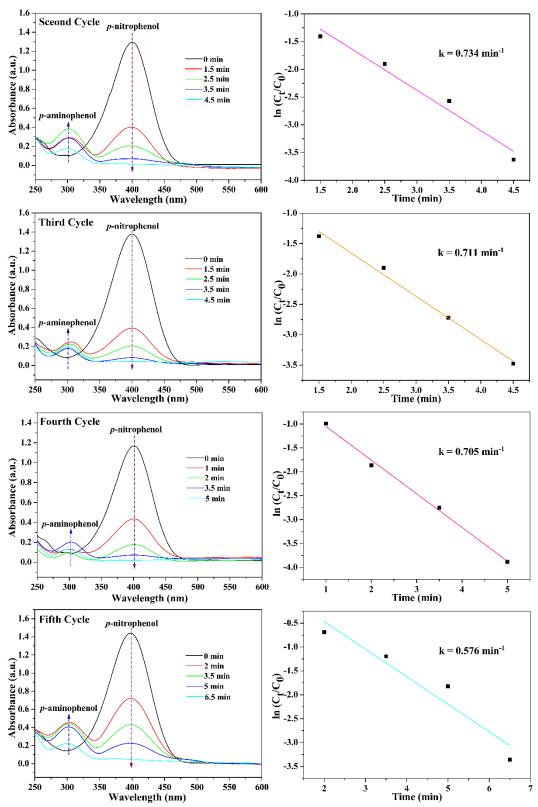
of 4-nitrophenol

Honglei Yang,^a Shuwen Li,^a Xueyao Zhang,^a Xiaoyu Wang^{*b} and Jiantai Ma^{*a}

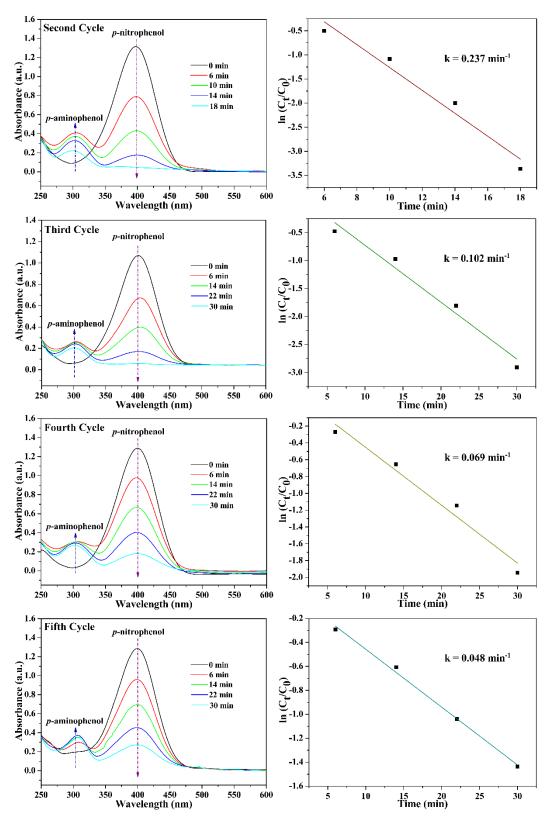
^a State Key Laboratory of Applied Organic Chemistry, College of Chemistry and

Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, P. R. China.

^b School of Earth Sciences & Key Laboratory of Mineral Resources in Western China


(Gansu Province), Lanzhou University, Lanzhou, Gansu 730000, P. R. China.

*Corresponding author:


e-mail: majiantai@lzu.edu.cn (J. Ma); wangxiaoyu@lzu.edu.cn (X. Wang).

Tel.: +86-931-8912577;

Fax: +86-931-8912582.

Fig. S1 Successive UV-vis spectra and kinetic curves for the reduction of 4-NP by NaBH₄ in the recycling experiments of the catalyst KCC-1-IL/Au (Ct and C₀ are 4-NP concentrations at time t and 0, respectively).

Fig. S2 Successive UV-vis spectra and kinetic curves for the reduction of 4-NP by NaBH₄ in the recycling experiments of the catalyst KCC-1/Au (Ct and C0 are 4-NP concentrations at time t and 0, respectively).

catalyst	cycle	k (min ⁻¹)	
KCC-1-IL/Au	1	0.718	
	2	0.734	
	3	0.711	
	4	0.705	
	5	0.576	
KCC-1/Au	1	0.365	
	2	0.237	
	3	0.102	
	4	0.069	
	5	0.048	

Table S1 The kinetic rate constant k for the reduction of 4-NP by NaBH4 in therecycling experiments of the catalysts KCC-1-IL/Au and KCC-1/Au