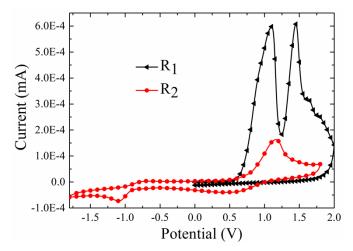
Electronic Supplementary Information for:

Solution-processed bulk-heterojunction organic solar cells employing

Ir complexes as electron donors

Hongyu Zhen, *ab Qiong Hou,^{cd} Kan Li,^a Zaifei Ma, ^b Simone Fabiano,^d Feng Gao^b and Fengling

Zhang^b


^aState key laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou 310027,

China *E-mail: hongyuzhen@zju.edu.cn

^b Department of Physics, Chemistry, and Biology, Linköping University, SE-581 83, Linköping, Sweden

^c School of Chemistry & Environment, South China Normal University, Guangzhou 510006, China ^d State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, 510641, China

^e Department of Science and Technology, Organic Electronics, Linköping University, SE-601 74, Norrköping, Sweden

Fig. S1. Cyclic voltammograms of Ir complexes films on glass-carbon electrode in an acetonitrile solution of 0.1 mol L^{-1} TBAP with a scan rate of 50 mV/s.

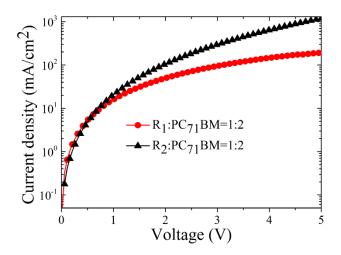
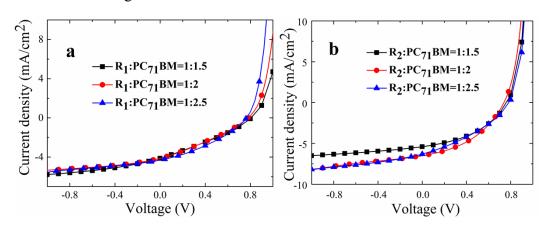



Fig. S2. J-V characteristics of the hole-only devices based on R_1/R_2 :PC₇₁BM

blends with a weight ratio of 1:2.

Fig. S3. *J-V* characteristics of the OSCs based on R_1/R_2 :PC₇₁BM blends with different

ratios