Supporting Information

Designed synthesis of TiO₂-modified iron oxides on/among carbon nanotubes as a superior lithium-ion storage material

Jinlong Liu,^{a,b} Dong Qian, *a,b Haibo Feng,^a Junhua Li,^a Jianbo Jiang,^a Sanjun Peng,^a

and Youcai Liu*a

^a College of Chemistry and Chemical Engineering, Central South University,

Changsha 410083, PR China

^b State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, PR China.

* Corresponding author. Telephone: +86-731-88879616. Fax: +86-731-88879616. Email: <u>qiandong6@vip.sina.com</u> (D.Q.); <u>liuyoucai@126.com</u> (Y.C.L.).

Figure S1. (a–c) SEM images, (d and e) TEM and (f) HRTEM images of acid-treated CNTs, and (g-i) SEM and (j-l) TEM images of Fe₂O₃/CNTs (the inset in (l) corresponding to the HRTEM image of selected area).

$$C_{\text{TFCs}} = C_{\text{CNTs}} \times W_{\text{CNTs}} + C_{\text{Fe2O3}} \times W_{\text{Fe2O3}} + C_{\text{TiO2}} \times W_{\text{TiO2}}$$
(S1)

Equation S1. The theoretical capacity of TFCs could be calculated on the basis of the above equation. Here the theoretical capacities of CNTs, Fe_2O_3 and TiO_2 are 372, 1005 and 335 mAh g⁻¹, respectively. According to TGA and ICP analyses results, the

weight percents of CNTs, Fe_2O_3 and TiO_2 in the composite TFCs are calculated to be 15.5%, 57.3% and 27.2%, respectively. Thus, the theoretical capacity of TFCs is 724.6 mAh g⁻¹.

Ref.	Component ^a	Carbon	Rate	Specific	Current	Cycle	Coulombic	Voltage
		content	capability	capacity	density	Number	efficiency	range
		(wt %)	(A =1)	based on	$(mA g^{-1})$		during	
			(mA g ⁻¹)	overall			cycling	(V)
				mass			(%)	
				$(mAh g^{-1})$				
1	C/Fe ₃ O ₄ /MWCNTs	33.3	-	656	100	145	_	0.02-3
2	Fe ₂ O ₃ /MWCNTs	1	100-1000	430	100	100	98	0.01-3
3	C/Fe ₃ O ₄ /CNTs	14	156-6250	840	390	100	~94	0.005-3
4	Fe ₂ O ₃ /CNTs	48.2	60-1200	811	35	100	-	0.02-2.5
5	Fe ₂ O ₃ /SWCNTs	12	50-2500	801	500	90	-	0.001-3
6	Fe ₂ O ₃ /CNTs	68.8	50-2000	633	50	50	-	0.005-2.5
7	Fe ₂ O ₃ /CNTs	55.2	50-500	619	50	80	-	0.01-3
8	Fe ₃ O ₄ /CNTs	~50	90-9000	836	100	100	95	0.1-3
9	C/Fe ₂ O ₃ /MWCNTs	30	500-3000	820	500	100	97–98	0.01-3
This	TiO ₂ /Fe ₂ O ₃ /MWCNTs	15.5	50-10000	922	500	500	99	0.05-3
work				1089	200	200	99	0.05-3

Table S1. Comparison of electrochemical performances of composites based on iron oxides and carbon nanotubes

^aC represents graphitized carbon formed by carbonization of precursor, Single-walled carbon nanotubes is denoted as SWCNTs, and Multi-walled carbon nanotubes is denoted as MWCNTs.

References

- 1. Y. He, L. Huang, J. S. Cai, X. M. Zheng and S. G. Sun, *Electrochim. Acta*, 2010, 55, 1140–1144.
- 2. Y. Huang, Z. Dong, D. Jia, Z. Guo and W. I. Cho, Solid State Ionics, 2011, 201, 54-59.
- X. Jia, Z. Chen, X. Cui, Y. Peng, X. Wang, G. Wang, F. Wei and Y. Lu, ACS Nano, 2012, 6, 9911–9919.
- 4. W. J. Yu, P. X. Hou, F. Li and C. Liu, J. Mater. Chem., 2012, 22, 13756-13763.

- G. Zhou, D. W. Wang, P. X. Hou, W. Li, N. Li, C. Liu, F. Li and H. M. Cheng, J. Mater. Chem., 2012, 22, 17942–17946.
- J. Ma, F. Yu, Z. Wen, M. Yang, H. Zhou, C. Li, L. Jin, L. Zhou, L. Chen, Z. Yuan and J. Chen, *Dalton Trans.*, 2013, 42, 1356–1359.
- 7. Y. Sun, J. Zhang, T. Huang, Z. Liu and A. Yu, Int. J. Electrochem. Sci., 2013, 8, 2918–2931.
- 8. Y. Wu, Y. Wei, J. Wang, K. Jiang and S. Fan, Nano Lett., 2013, 13, 818-823.
- 9. Z. Wang, D. Luan, S. Madhavi, Y. Hu and X. W. Lou, *Energy Environ. Sci.*, 2012, 5, 5252–5256.