Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2014

Supporting information

Figure S1: Refinement of the XRD of $Cu_{0.5}TiOPO_4$ lithiated to 1.71 V (sample c).

Figure S2: Contour plot of an in situ XRD measurement of an electrode containing $Cu_{0.5}TiOPO_4$ around the copper 111 reflection (43.3°) for two cycles at a specific current of 21.1 A/kg (blue: low intensity; red: high intensity). On the right hand side, the corresponding galvanostatic curve is shown.

Figure S3: Fit of the Fourier transform of EXAFS-spectra of pristine $Cu_{0.5}TiOPO_4$ and of $Cu_{0.5}TiOPO_4$ lithiated to 1.78 V (sample b) and 1.71 V (sample c) (from bottom to top).

Sample	Path	Ν	S02	sigma ²	e0	Δr	Reff	R
Cu _{0.5} TiOPO ₄ start	O5.1	4	0.701	0.00366	-0.731	-0.03121	1.97780	1.94659
	O2.1	2	0.701	0.01308	-0.731	-0.05080	2.29030	2.23950
	Ti1.1	2	0.701	0.00431	-0.731	0.00511	2.93250	2.93762
R-factor:	P1.1	2	0.701	0.01456	-0.731	-0.13074	3.17800	3.04726
0.0043203	Ti1.2	2	0.701	0.00283	-0.731	0.00131	3.33290	3.33421
Cu _{0.5} TiOPO ₄ 1.78 V	O5.1	4	0.880	0.00564	-0.358	-0.02390	1.97780	1.95390
	O2.1	2	0.880	0.01380	-0.358	-0.00977	2.29030	2.28053
	Ti1.1	2	0.880	0.00547	-0.358	0.01159	2.93250	2.94409
R-factor:	P1.1	2	0.880	0.02346	-0.358	-0.11668	3.17800	3.06132
0.0058159	Ti1.2	2	0.880	0.00387	-0.358	0.00808	3.33290	3.34097
Cu _{0.5} TiOPO ₄ 1.71 V	Cu.1	12	0.625	0.00895	4.478	-0.01539	2.55270	2.53731
	Cu.2	6	0.625	0.01333	4.478	-0.02176	3.61000	3.58824
	Cu.1-	48	0.625	0.01790	4.478	-0.02308	3.82900	3.80592
R-factor:	Cu.1							
0.0111593	Cu.1-	24	0.625	0.01790	4.478	-0.02627	4.35770	4.33143
	Cu.1							
	Cu.1-	48	0.625	0.02228	4.478	-0.02627	4.35770	4.33143
	Cu.2							
	Cu.3	24	0.625	0.02332	4.478	-0.02665	4.42130	4.39465
	Cu.1-	48	0.625	0.01790	4.478	-0.02871	4.76330	4.73459
	Cu.1							
	Cu.1-	96	0.625	0.03227	4.478	-0.02871	4.76330	4.73459
	Cu.3							

Table S1: Fitted scattering paths of the EXAFS-spectra of pristine $Cu_{0.5}TiOPO_4$ and $Cu_{0.5}TiOPO_4$ lithiated to 1.78 V and 1.71 V.

Figure S4: 31P NMR spectra of triphenyl phosphine. The spinning rate was set to 10 kHz. The recycling delay was set to 1 s. A 120 kHz radio frequency 90° pulse was used to recorded this spectra.

Table S2: CASTEP NMR calculations and experimental chemical shift (δ_{iso}) of triphenyl phosphine (external reference), triclinic LiTiOPO₄, and orthorhombic LiTiOPO₄. The coordinates were taken from COD ¹ for PPh₃ and from ICSD for LiTiOPO₄.

Compound	Calculated δ _{iso} (ppm)	Normalised δ _{iso} (ppm)	Experimental δ _{iso} (ppm)	
PPh ₃	300	6	6	
LiTiOPO ₄ triclininc	285/290*	-21/-16*	-9/-3*	
LiTiOPO ₄ orthorhombic	289	-17	-	

* The peaks have the same intensities.

^{1.} Grazulis, S.; Daskevic, A.; Merkys, A.; Chateigner, D.; Lutterotti, L.; Quiros, M.; Serebryanaya, N. R.; Moeck, P.; Downs, R. T.; Le Bail, A., *Nucleic Acids Res.* **2012**, *40*, D420.