Structural, textural and acid-base properties of carbonates-containing hydroxyapatites

Lishil Silvester^{*a,b*}, Jean-François Lamonier^{*a,b*}, Rose-Noëlle Vannier^{*a,b,c*}, Carole Lamonier^{*a,b*}, Mickaël 5 Capron^{*a,b*}, Anne-Sophie Mamede^{*a,b,c*}, Frédérique Pourpoint^{*a,b,c*}, Antonella Gervasini^{*d*} and Franck Dumeignil^{*a,b,e**}

Supplementary information

Fig.S1 Calculated X-ray diffraction profiles of Hap D (black lines) compared to experimental data (red dots) showing a poor agreement between calculated and experimental profiles for 002 and 004 Bragg peaks when an isotropic size-broadening model is used (a) and a good agreement when an anisotropic size-broadening model is used (b).

Fig.S2 Calculated X-ray diffraction profiles of Hap and HapE-Na-CO₃ samples (black lines) compared to experimental data (red dots) showing a good agreement between calculated and experimental profiles as shown by the difference in blue. R_B and R_F , the reliability factors, are given to attest the quality of the structure model.

Fig.S3 (Ca + Na)/P ratio calculated from XRD refinement as a function of the ICP (Ca + Na)/P ratio (circles representing HapD and Hap, squares for carbonated apatites, namely Hap-CO₃ and HapNa-CO₃, and triangles for carbonate-rich apatites, namely HapE-CO₃ and HapE-Na-CO₃). The dashed line represents the theoretical perfect correlation (1 to 1).

5

Fig.S4 XRD patterns of *(a)* HapD [arrow pointing the temperature for the appearance of $Ca_3(PO_3)_2$ phases mainly at $2\theta = 30^\circ \& 34.5^\circ$], *(b)* Hap-CO₃ 5 [arrow representing the formation of CaO phase at $2\theta = 37^\circ$] and *(c)* HapE-Na-CO₃ [arrow at 823 K showing the reconstruction of apatite structure and the formation of CaO phase for $2\theta = 37^\circ$, 53.5° & 66.5° at 898 K] collected during temperature increase under air.

Fig. S5 Derived TGA curves of apatite solids obtained using MS with m/z = 44 showing the CO₂ loss.

5

Fig. S6 Derived TGA curves of apatite solids obtained using MS with m/z = 18 showing the H₂O loss.

10

Fig. S7 ³¹P CP MAS-NMR spectra of the hydroxyapatite solids.

Fig.S8 C1s photopeak of the samples.

Fig.S9 Specific acidity of the solids as a function of the surface Ca/P and the C_{carbonate}/P ratios (circles representing HapD and Hap, squares for carbonated apatites, namely Hap-CO₃ and HapNa-CO₃, and triangles for carbonate-rich apatites, namely HapE-CO₃ and HapNa-CO₃).