Support Information Synthetic Controlling the Optoelectronic Properties of Dithieno[2,3-d:2', $\left.3^{\prime}-d^{\prime}\right]$ benzo[1,2-b:4,5-b']dithiophene-altdiketopyrrolopyrrole Conjugated Polymers for Efficient Solar Cells

Shuo Sun ${ }^{\text {a }}$, Peng Zhang ${ }^{\text {b }}$, Jianfeng Lib ${ }^{\text {b }}$, Yuanke Lib ${ }^{\text {b }}$, Jianlu Wang ${ }^{\text {a }}$, Shujiang Zhang ${ }^{c}$, Yangjun
Xia ${ }^{*, b}$, Xiangjian Meng*a, Duowang Fan ${ }^{\text {b }}$ and Junhao Chu ${ }^{\text {a }}$
${ }^{\text {a }}$ National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics,Chinese Academy of Sciences, Shanghai 200083, China. E-mail address:xjmeng@mail.sitp.ac.cn (X. Meng), Tel.:+86-21-25051881; Fax:+86-21-65830734
${ }^{b}$ Key Lab of Optoelectronic Technology and Intelligent Control of Education Ministry, Lanzhou Jiaotong University, Gansu Province, Lanzhou, 730070, China. E-mail address:_yixia73@126.com (Y. Xia), Tel.: +86 0931 4956022; Fax: +86 09314956058
${ }^{\text {c College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China. }}$

Contents

1. Dithieno[2,3-d:2' ,3' - d^{\prime}]benzo[1,2-b:4,5-b']dithiophene-5,10-dione 2
2. X-ray crystallographic analysis7
3. Characterization of the DTBDT dervatives and conjugated polymers based on DTBDTS. 17
4. ${ }^{1}$ HNMR spectra of the Monomers 21
5. Reference 42

1. Dithieno[2,3-d:2', $\left.3^{\prime}-d^{\prime}\right]$ benzo[1,2-b:4,5-b']dithiophene-5,10-dione

Scheme S1. Synthetic route of dithieno[2,3-d:2', $\left.3^{\prime}-d^{\prime}\right]$ benzo $\left[1,2-b: 4,5-b^{\prime}\right]$ di- thiophene-5,10-dione

3,4-Dibromothiophene-2-carbaldehyde (1) ${ }^{[1]}$

3,4-Dibromothiophene ($60 \mathrm{~g}, 248 \mathrm{mmol}$) was added dropwise to a stirred solution of
 $\mathrm{mL}, 273.0 \mathrm{mmol}, 1.1 \mathrm{eq}$.$) to diisopropylamine (38.87 \mathrm{~mL}, 27.60 \mathrm{~g}, 273.0 \mathrm{mmol}$)] in anhydrous THF (500 mL) at $0^{\circ} \mathrm{C}$. The resulting mixture was stirred for a further 1 h at this temperature prior to addition of dry N, N-dimethylformamide (DMF) (20.97 mL , $19.93 \mathrm{~g}, 273.0 \mathrm{mmol}, 1.1 \mathrm{eq})$. The mixture was stirred further until TLC analysis indicated that all the starting material had been consumed when an excess of 20%
aqueous ammonium chloride was added to it. Extraction of the mixture with ethyl acetate (EA) for several times, and the combined organic phase was washed with brine and distilled water ($3 \times 200 \mathrm{~mL}$), dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated and purified over a silica gel column using petroleum ether (PE) and EA (15:1, v/v) as an eluent, affording 1 as a pale-yellow powder ($40.8 \mathrm{~g}, 61 \%$). M.p. $110-111^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$, $\delta(\mathrm{ppm}): 9.95(\mathrm{~d}, 1 \mathrm{H}), 7.76(\mathrm{~d}, 1 \mathrm{H})$.

Ethyl 6-bromothieno[3,2-b]thiophene-2-carboxylate (2)

3,4-Dibromothiophene-2-carbaldehyde $1(40.0 \mathrm{~g}, 148.1 \mathrm{mmol})$ was added to a stirred mixture of ethyl 2-sulfanylacetate ($18.66 \mathrm{~g}, 155.3 \mathrm{mmol}, 1.05 \mathrm{eq}$.$) , potassium carbonate$ ($30.66 \mathrm{~g}, 222.1 \mathrm{mmol}, 1.5 \mathrm{eq}$.$) and DMF (400 \mathrm{~mL}$) at ambient temperature and the resulting mixture was stirred about 72 h . The reacting solvent DMF was removed under reduced pressure. Then the residual was poured into water $(500 \mathrm{~mL})$ and extracted with EA. The combined organic phase was dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the organic phase was concentrated and purified over a silica gel column using PE-EA ($10: 1, \mathrm{v} / \mathrm{v}$) as an eluent, affording 2 as white powder ($40.95 \mathrm{~g}, 95 \%$). M.p. $80-81^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right.$, $400 \mathrm{MHz}), \delta(\mathrm{ppm}): 8.01(\mathrm{~d}, 1 \mathrm{H}), 7.46(\mathrm{~d}, 1 \mathrm{H}), 4.38(\mathrm{q}, 2 \mathrm{H}), 1.40(\mathrm{t}, 3 \mathrm{H})$.

6-Bromothieno[3,2-b]thiophene-2-carboxylic acid (3)

A stirred mixture of the ester $2(40.0 \mathrm{~g}, 137.4 \mathrm{mmol})$, aqueous lithium hydroxide (1.0 $\mathrm{mol} \mathrm{L}{ }^{-1} ; 300 \mathrm{~mL}$) and THF (300 mL) was heated under reflux for about 3 h (until TLC analysis indicated absence of $\mathbf{2}$ when the solvent was distilled off under reduced pressure and conc. hydrochloric acid (100 mL) was added to the residue. The precipitate was filtered off, washed with water and dried in a vacuum desiccator to give the acid $\mathbf{3}$ as grey solid (32.8 g, 91\%). M.p. $261-263{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right), \delta(\mathrm{ppm}): 9.95(\mathrm{~d}$, $1 \mathrm{H}), 7.76(\mathrm{~d}, 1 \mathrm{H})$.

3-Bromothieno[3,2-b]thiophene (4)

A stirred solution of the acid $3(30.0 \mathrm{~g}, 114.0 \mathrm{mmol})$, copper powder (4.0 g) and quinoline (160 mL) was heated at $260^{\circ} \mathrm{C}$ in a sand bath. When TLC analysis confirmed the absence of starting material and the reaction mixture was cooled to ambient temperature. PE (200 mL) was added to the mixture and most of the quinoline was removed by repeated washing of the resulting solution with hydrochloric acid $\left(1.0 \mathrm{~mol} \mathrm{~L}^{-}\right.$ ${ }^{1}$), after which the residue was chromatographed on silica using the PE as an eluent, affording the compound 4 as colorless oil liquid (12.7 g, 51\%). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400\right.$ $\mathrm{MHz}), \delta(\mathrm{ppm}): 7.44(\mathrm{dd}, 1 \mathrm{H}), 7.30(\mathrm{~d}, 1 \mathrm{H}), 7.29(\mathrm{~d}, 1 \mathrm{H})$.

Thieno[3,2-b]thiophene-3-carboxylic acid (5).

To a solution of 3-bromothieno[3,2-b]thiophene ($17.0 \mathrm{~g}, 77.6 \mathrm{mmol}$) in anhydrous diethyl ether (300 mL) at $-78{ }^{\circ} \mathrm{C}$, $n-\mathrm{BuLi}(2.5 \mathrm{M}$ in hexane, 46.6 mL) was added dropwise, and the mixture was stirred at the same temperature for 3 h under argon atmosphere. Excess carbon dioxide $\left(\mathrm{CO}_{2}\right)$ was slowly bubbled into the reaction system until the 3-bromothieno[3,2-b]thiophene was reacted completely (monitored by TLC). After the reaction solution was warmed to ambient temperature, 100 mL distilled water was added. Then the solution was concentrated to 100 mL , and the concentrated hydrochloric acid was added and the pH of mixture solution was adjusted to 3 . The precipitate was filtered off, washed successively with water and petroleum ether to give the acid 5 as a yellow solid ($13.1 \mathrm{~g}, 92 \%$). M.p. $214-216{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{COCD}_{3}, 400\right.$ $\mathrm{MHz}) \delta(\mathrm{ppm}): 8.38(\mathrm{~s}, 1 \mathrm{H}) ; 7.68(\mathrm{dd}, 1 \mathrm{H}) ; 7.48(\mathrm{~d}, 1 \mathrm{H})$.

Thieno[3,2-b]thiophene-3-carbonyl chloride. (6)

Thieno[3,2-b]thiophene-3-carboxylic acid ($32.0 \mathrm{~g}, 173.7 \mathrm{mmol}$) was dissolved into the solution of benzene $(300 \mathrm{~mL})$ and DMF $(1 \mathrm{~mL})$. The mixture was cooled down to 0 ${ }^{\circ} \mathrm{C}$ with an ice-water bath, and then oxalyl chloride ($66.22 \mathrm{~g}, 521.7 \mathrm{mmol}, 3 \mathrm{eq}$.) was added dropwise through a dropping funnel. After the ice-bath was removed and the mixture was heated to reflux for about 3 h until absence of the solid acid, a clear brown solution was obtained. The solvent and oxalyl chloride were removed by rotary evaporation under reduced pressure. 35.4 g brown oil was obtained. It was dissolved into 80 mL of dried dichloromethane (DCM) and used for the next step directly.
N, N-Diethylthieno[3,2-b]thiophene-3-carboxamide. (7)

In a 500 mL flask cooled in an ice-water bath, 62.5 mL of diethylamine $(38.16 \mathrm{~g}, 521.7$ mmol) was dissolved into 150 mL of dried DCM. The solution of thieno[3,2-b]thiophene-3-carbonyl chloride in DCM (35.4 g in 80 mL DCM) was slowly added into the flask. After the reaction mixture was stirred at same temperature for 0.5 h , the reactants were stirred at ambient temperature overnight. The solvent DCM and un-reacted diethylamine were removed under reduced pressure. Then the residual was poured into 300 mL distilled water and extracted with ethyl acetate $(3 \times 100 \mathrm{~mL})$. The combined organic layer was washed with distilled water $(3 \times 50 \mathrm{~mL})$, and dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removing of the solvent, the crude product was purified over a silica gel column using PE and EA solution (V/V; 4:1) as eluent, and compound 7 (32.55 g , yield 80%) was obtained as pale solid. M.p. $47-48{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right), \delta(\mathrm{ppm}): 7.53(\mathrm{~s}, 1 \mathrm{H}), 7.46(\mathrm{~d}$, $1 \mathrm{H}), 7.24(\mathrm{~d}, 1 \mathrm{H}), 3.57(\mathrm{q}, 4 \mathrm{H}), 1.27(\mathrm{t}, 6 \mathrm{H})$.

Dithieno[2,3-d:2', $\left.3^{\prime}-\mathrm{d}^{\prime}\right]$ benzo[1,2-b:4,5-b']dithiophene-5,10-dione. (I)

N, N-Diethylthieno[3,2-b]thiophene-3-carboxamide ($17.0 \mathrm{~g}, 71.0 \mathrm{mmol}$) was put into a well-dried flask with 150 mL of anhydrous THF under an argon atmosphere at $0^{\circ} \mathrm{C}, 35.5$ mL of $\mathrm{n}-\mathrm{BuLi}(2.5 \mathrm{~mol} / \mathrm{L}, 88.7 \mathrm{mmol})$ was added dropwise into the flask within 15 min . The reactants were stirred at ambient temperature for 1 h , and then quenched by distilled water. The brown precipitate was collected and washed with 200 mL of water, 50 mL of methanol, and 50 mL of hexane successively. After dried in vacuum desiccator, the dione I was obtained as a brown powder, and used for the next step without purification (10.5 g,
yield 89%). M.p. $>280^{\circ} \mathrm{C}$.

2. X-ray crystallographic analysis

Single crystals of 5,10-bis(butyloxy)dithieno[2,3-d:2', $\left.3^{\prime}-d^{\prime}\right]$ benzo[1,2-b:4,5-b']dithiophene (DTBDT-C4), 5,10-bis(octyloxy)dithieno[2,3- $\left.d: 2^{\prime}, 3^{\prime}-d^{\prime}\right]$ benzo[1,2-b:4,5-b' $]$ dithiophene (DTBDT-C8), 5,10-bis(dodecyloxy)dithieno[2,3-d:2'3'-d']benzo[1,2-b: 4,5b^{\prime}]dithiophene (DTBDT-C12) and 5,10-bis(trimethylsilylacetyl)dithieno[2,3-d: 2', 3'd^{\prime}]benzo[1,2-b:4,5-b]dithiophene (DTBDT-TMS) suitable for X-ray structural analysis were obtained by recrystallization from the mixture of hexane and chloroform. Singlecrystal X-ray diffraction data were collected at 296 K on a BRUKER SMART APEX II CCD diffractometer with graphite monochromated Mo-K α radiation ($\lambda=0.71073 \AA$). The LP factor multi-scan corrections were applied using the SADABS program. ${ }^{[2]}$ The structure was solved by direct methods and refined by the full-matrix least-squares method on F^{2} using the SHELXTL crystallographic software package. ${ }^{[3]}$ All nonhydrogen atoms were refined anisotropically. The positions of all hydrogen atoms were calculated geometrically $(\mathrm{C}-\mathrm{H}=0.93,0.96$ and $0.97 \AA$) and refined as a riding model, with $\mathrm{U}_{\text {iso }}(\mathrm{H})=1.20 \mathrm{U}_{\text {eq }}(\mathrm{C})$. The crystal data and experimental parameters relevant to the structure determination are listed in Table S1.

The molecular structures and packing interaction diagrams of DTBDT-C4, DTBDT-C8, DTBDT-C12 and DTBDT-TMS, are shown in Fig. S1-S4, respectively. It was noted that all oxygen atoms almost placed in the plane (deviation $0.077 \AA, 0.029 \AA$ and $0.018 \AA$ for DTBDT-C4, DTBDT-C8 and DTBDT-C12, respectively) defined by dithieno[2,3-d:2', $\left.3^{\prime}-d^{\prime}\right]$ benzo[1,2-b:4,5-b']dithiophene (DTBDT) core ring. However, for carbon atoms, there exist different deviations. Deviations of atom C8, C9, C10 and C11
from DTBDT ring plane were 1.181, 1.005, 0.104 and $0.01 \AA$ in DTBDT-C4 molecule, respectively. Deviations of atom $\mathrm{C} 8, \mathrm{C} 9, \mathrm{C} 10$ and C 11 from DTBDT ring plane were 1.181, 1.005, 0.104 and $0.01 \AA$ in DTBDT-C4 molecule, respectively. Deviations of atom C8, C9, C10, C11, C12, C13, C14 and C15 from DTBDT ring plane were 1.282, 1.213, $1.099,1.245,1.249,1.408,1.412$ and $1.647 \AA$ in DTBDT-C8 molecule, respectively. Deviations of atom C8, C9, C10, C11, C12, C13, C14, C15, C16, C17, C18 and C19 from DTBDT ring plane were $0.069,0.031,0.019,0.040,0.067,0.142$, $0.162,0.253,0.269,0.350,0.339$ and $0.454 \AA$ in DTBDT-C12 molecule, respectively. For compound DTBDT-TMS acetylene bond atoms C8, C9 and silicon atom Si1 placed in the plane defined by DTBDT core ring.

Table S1 Details of the crystal structures analyses for DTBDT-based derivatives

Compound No.	DTBDT-C4	DTBDT-C8	DTBDT-C12	DTBDT-TMS
CCDC No.	906863	906864	906862	906865
Empirical formula	$\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{~S}_{4}$	$\mathrm{C}_{30} \mathrm{H}_{38} \mathrm{O}_{2} \mathrm{~S}_{4}$	$\mathrm{C}_{38} \mathrm{H}_{54} \mathrm{O}_{2} \mathrm{~S}_{4}$	$\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{~S}_{4} \mathrm{Si}_{2}$
Formula weight ($\mathrm{g} \mathrm{mol}^{-1}$)	444.62	558.84	671.06	494.84
Crystal system	Monoclinic	Monoclinic	Triclinic	Monoclinic
Space group	$P 2_{1} / \mathrm{n}$	$P 2_{1} / \mathrm{n}$	P_{1}^{-}	$P 2{ }_{1} / \mathrm{c}$
Temperature (K)	296(2)	296(2)	296(2)	296(2)
$a(\AA)$	8.451(6)	8.568(10)	7.507(4)	6.330(4)
$b(\AA)$	9.412(7)	17.79(2)	$9.506(5)$	21.410(14)
$\mathrm{c}(\AA)$	13.83(1)	$9.479(11)$	13.155(7)	$9.618(7)$
$\alpha\left(^{\circ}\right.$)	90.00	90.00	81.790(6)	90.00
$\beta\left({ }^{\circ}\right)$	106.097(6)	99.479(12)	76.147(6)	103.021(7)
$\gamma\left({ }^{\circ}\right)$	90.00	90.00	89.255(6)	90.00
$V\left(\AA^{3}\right)$	1056.7(13)	1425(3)	902.0(9)	1270.0(15)
Z	2	2	1	2
$\rho_{\text {calcd }}\left(\mathrm{mg} / \mathrm{m}^{3}\right)$	1.397	1.302	1.235	1.294
$\mu\left(\mathrm{mm}^{-1}\right)$	0.465	0.360	0.295	0.478
θ range for data collection $\left(^{\circ}\right.$)	2.55 to 25.00	2.29 to 25.30	2.51 to 25.50	2.37 to 25.30
Limiting indices	$\begin{aligned} & -10 \leq h \leq 10,-11 \leq k \leq 8 \\ & -16 \leq l \leq 16 \end{aligned}$	$\begin{aligned} & -10 \leq h \leq 10,-21 \leq k \leq 18, \\ & -10 \leq l \leq 11 \end{aligned}$	$\begin{aligned} & -9 \leq h \leq 9,-11 \leq k \leq 11, \\ & -13 \leq l \leq 15 \end{aligned}$	$\begin{aligned} & -7 \leq h \leq 7,-22 \leq k \leq 25, \\ & -11 \leq l \leq 11 \end{aligned}$
$F(000)$	464	596	362	516
Crystal size (mm^{3})	$0.22 \times 0.20 \times 0.14$	$0.22 \times 0.20 \times 0.14$	$0.30 \times 0.24 \times 0.15$	$0.30 \times 0.25 \times 0.14$

Reflections collected/unique	$5929 / 1852$	$6254 / 3208$	$6254 / 3208$	$8668 / 2313$
$R_{\text {int }}$	0.0234	0.0354	0.0382	0.0617
Refinement method	Full-matrix least	Full-matrix least	Full-matrix least	Full-matrix least
	squares on F^{2}	squares on F^{2}	squares on F^{2}	squares on F^{2}
Data/restraints/parameters	$1852 / 0 / 128$	$2574 / 0 / 164$	$3208 / 0 / 200$	$2313 / 0 / 139$
GOF	1.051	1.071	1.292	1.197
Final R indices [I>2 $\sigma(\mathrm{I})]$	$R_{1}=0.0475, w R_{2}=0.1268$	$R_{1}=0.0391, w R_{2}=0.0928$	$R_{1}=0.0631, w R_{2}=0.1481$	$R_{1}=0.0657, w R_{2}=0.1178$
R indices (all data)	$R_{1}=0.0613, w R_{2}=0.1398$	$R_{1}=0.0580, w R_{2}=0.1083$	$R_{1}=0.0934, w R_{2}=0.1592$	$R_{1}=0.1166, w R_{2}=0.1412$
Max. $/$ min. $\Delta \rho\left(\mathrm{e} \AA^{-3}\right)$	$0.689 /-0.345$	$0.265 /-0.248$	$0.475 /-0.347$	$0.289 /-0.350$

Fig. S1 Molecular structures in top view (a) and side view (b) of DTBDT-C8. (c) Packing diagram of DTBDT-C8, showing the distances $9.48 \AA$ and $11.3 \AA$ between the centroids of adjacent molecules and the dihedral angle of 37.2°.

Fig. S2 Molecular structures in top view (a) and side view (b) of DTBDT-C12. (c) Packing diagram of DTBDT-C12, showing the distances $7.51 \AA$ and $9.51 \AA$ between the centroids of adjacent molecules and the dihedral angle of 0°.

Fig. S3 Molecular structures in top view (a) and side view (b) of DTBDT-TMS. (c) Packing diagram of DTBDT-TMS in crystals with layered herringbone structure, showing the distances $6.33 \AA$ between the centroids of adjacent molecules and the dihedral angle of planes defined two adjacent molecules of 88.25°.

BDT

DTBDT-C4

Fig. S4 Diagram showing the area calculation for BDT (left) and DTBDT-C4 (right)

Table S2. Data of area $\left(\AA^{2}\right)$ calculation for BDT and DTBDT-C4

BDT		DTBDT derivatives				
Section No.	Area $\left(\AA^{2}\right)$	Section No.	Area $\left(\AA^{2}\right)$			
			DTBDT-C4	DTBDT-C8	DTBDT-C12	DTBDT-TMS
S1	1.503	S1	1.477	1.486	1.475	2.951
S2	1.569	S2	1.539	1.538	1.533	3.048
S3	0.968	S3	0.892	0.887	0.895	1.771
S4	0.860	S4	1.527	1.528	1.531	3.060
S5	1.696	S5	1.577	1.636	1.586	3.140
		S6	0.951	0.894	0.941	1.871
		S7	0.846	0.855	0.867	1.752
		S8	1.684	1.695	1.674	3.397
$S_{\text {BDT }}$	13.191	$S_{\text {DTbdt }}$	20.989	21.036	21.004	20.990

Note: $S_{\mathrm{BDT}}=2 \times(\mathrm{S} 1+\mathrm{S} 2+\mathrm{S} 3+\mathrm{S} 4+\mathrm{S} 5), S_{\mathrm{DTBDT}}=2 \times(\mathrm{S} 1+\mathrm{S} 2+\mathrm{S} 3+\mathrm{S} 4+\mathrm{S} 5+\mathrm{S} 6+\mathrm{S} 7+\mathrm{S} 8)$

BDT

DTBDT-C4

Fig.S5 Diagram showing the lines through α position (C 1 and H 1) of peripheral thiophene for BDT and DTBDT-C4, resprctively, exhibiting line 1 and line 2 are parallel each other.

3. Characterization of the DTBDT dervatives and conjugated polymers based on DTBDTS

Fig. S6 Electrochemical properties of DTBDT derivatives

Fig. S7 Electrochemical curve of $\mathrm{Fc} / \mathrm{Fc}^{+}$in 0.1 M tetrabutylammonium hexafluorophosphate $\left(\mathrm{Bu}_{4} \mathrm{NPF}_{6}\right)$ with acetonitrile $\left(\mathrm{CH}_{3} \mathrm{CN}\right)$ and dichloromethane (V:V, 1:1) as solvent

Fig. S8 TG curves of DTBDT derivatives

Fig. S9 Electrochemical properties of DTBDTs-based conjugated polymers

Fig. S10 Electrochemical curve of $\mathrm{Fc} / \mathrm{Fc}^{+}$in 0.1 M tetrabutylammonium hexafluorophosphate $\left(\mathrm{Bu}_{4} \mathrm{NPF}_{6}\right)$ with acetonitrile $\left(\mathrm{CH}_{3} \mathrm{CN}\right)$ as solvent

Table S3. Hole mobilities of DTBDTs-based conjugated polymers and $\mathrm{PC}_{71} \mathrm{BM}$ blend measured by SCLC model

Active layer	Thickness (nm)	Hole mobility $\left(\mathrm{cm}^{-2} \mathrm{~V}^{-1} \cdot \mathrm{~s}^{-1}\right)$
PBT-HD-DPP-C16/PC ${ }_{71} \mathrm{BM}(\mathrm{W}: \mathrm{W}, 1: 1.5)$	95	8.5×10^{-6}
PBT-HD-DPP-C16/PC	BM $(\mathrm{W}: \mathrm{W}, 1: 1.5)$	115
PBT-HD-DPP-C16/PC	$1.78 \times 10^{-4} \mathrm{BM}(\mathrm{W}: \mathrm{W}, 1: 1.5)$	115

Fig. S11 Open circuit voltage and the differences between of the LUMO energy level of $\mathrm{PC}_{71} \mathrm{BM}$ and the DTBDTs-based polymers

Fig. S12 I-V characteristics of the SCLC measurement of DTBDTs-based conjugated polymers and $\mathrm{PC}_{71} \mathrm{BM}$ blend
4. ${ }^{1}$ HNMR spectra of the Monomers

Fig. S13 ${ }^{1} \mathrm{H}$ NMR spectrum of 3,4-dibromothiophene-2-carbaldehyde in CDCl_{3}

Fig. S14. ${ }^{1} \mathrm{H}$ NMR spectrum of ethyl 6-bromothieno[3,2-b]thiophene-2-carboxylic acid in CDCl_{3}

Fig. S15. ${ }^{1} \mathrm{H}$ NMR spectrum of 3-bromothieno[3,2-b]thiophene in CDCl_{3}

Fig. S16. ${ }^{1} \mathrm{H}$ NMR spectrum of thieno[3,2-b]thiophene-3-carboxylic acid in $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}$

Fig. S17. ${ }^{1} \mathrm{H}$ NMR spectrum of N, N-diethylthieno[3,2-b]thiophene-3-carboxamide in CDCl_{3}

Fig. S18. ${ }^{1} \mathrm{H}$ NMR spectrum of 5,10-bis(butyloxy)dithieno[2,3-d:2', $\left.3^{\prime}-d^{\prime}\right]$ benzo $\left[1,2-b: 4,5-b^{\prime}\right]$ dithiophene in CDCl_{3}

Fig. S19 ${ }^{1} \mathrm{H}$ NMR spectrum of 5,10-bis(octyloxy)dithieno[2,3-d:2', $\left.3^{\prime}-d^{\prime}\right]$ benzo $\left[1,2-b: 4,5-b^{\prime}\right]$ dithiophene in CDCl_{3}

Fig. S20. ${ }^{1} \mathrm{H}$ NMR spectrum of 5,10-bis(dodecyloxy)dithieno[2,3- $\left.d: 2^{\prime}, 3^{\prime}-d^{\prime}\right]$ benzo[1,2-b:4,5-b']dithiophene in CDCl_{3}

Fig. S21. ${ }^{1} \mathrm{H}$ NMR spectrum of 5,10-bis(2-hexyldecyloxy)dithieno[2,3-d:2', $\left.3^{\prime}-d^{\prime}\right]$ benzo $\left[1,2-b: 4,5-b^{\prime}\right]$ dithiophene in CDCl_{3}

Fig. S22. ${ }^{1} \mathrm{H}$ NMR spectrum of 5,10-di(2-trimethylsilylethynyl)dithieno[2,3-d:2', $\left.3^{\prime}-d^{\prime}\right]$ benzo[1,2-b:4,5-b']dithiophene in CDCl_{3}

Fig. S23. ${ }^{1} \mathrm{H}$ NMR spectrum of 5,10-bis(tri-iso-propylsilyethynyl)dithieno[2,3-d:2', $\left.3^{\prime}-d^{\prime}\right]$ benzo[1,2-b:4,5-b']dithiophene in CDCl_{3}

Fig. S24. ${ }^{1} \mathrm{H}$ NMR spectrum of 5,10-bis(4,5-didecylthien-2-yl)dithieno[2,3-d:2', $\left.3^{\prime}-d^{\prime}\right]$ benzo[1,2-b:4,5-b']dithiophene in CDCl_{3}

Fig. S25. ${ }^{1} \mathrm{H}$ NMR spectrum of 2,7-di(trimethylstannyl)-5,10-di(2-hexyldecyloxy)dithieno[2,3-d:2', $\left.3^{\prime}-d^{\prime}\right]$ benzo $\left[1,2-b: 4,5-b^{\prime}\right]$ dithiophene in CDCl_{3}

Fig. S26. ${ }^{1} \mathrm{H}$ NMR spectrum of 2,7-di(trimethylstannyl)-5,10-bis(4,5-didecylthien-2-yl)dithieno[2,3-d:2', $\left.3^{\prime}-d^{\prime}\right]$ benzo $\left[1,2-b: 4,5-b^{\prime}\right]$ dithiophene in CDCl_{3}

Fig. S27 ${ }^{1} \mathrm{H}$ NMR spectrum of 2,7-di(trimethylstannyl)-5,10-bis(2-tri-iso-propylsilyethynyl)dithieno[2,3-d:2', $\left.3^{\prime}-d^{\prime}\right]$ - benzo[1,2-b:4,5b^{\prime}]dithiophene in CDCl_{3}

Fig. S28 ${ }^{13} \mathrm{C}$ NMR of 5,10-Di(2-hexyldecyloxy)dithieno[2,3-d:2', $3^{\prime}-\mathrm{d}^{\prime}$]benzo[1, 2-b:4,5-b']dithiophene (IId).

Fig. S29 ${ }^{13} \mathrm{C}$ NMR of 5,10-Bis(4,5-didecylthieno-2-yl)dithieno[2,3-d:2', $\left.3^{\prime}-d^{\prime}\right]$ be-nzo[1,2-b:4,5-b'] dithiophene (DTBDT-T)

Fig. S30 ${ }^{13} \mathrm{C}$ NMR of 5,10-Bis(2-tri-iso-propylsilylethynyl)dithieno[2,3-d:2', $\left.3^{\prime}-d^{\prime}\right]$ benzo[1,2-b:4,5-b']dithiophene (DTBDT-TIPS).

Fig. S31 ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of PBT-HD-DPP-C16

Fig. S32 ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of PBT-T-DPP-C12

Fig. S33 ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of PBT-TIPS-DPP-C16

5. Reference

[1] L.S. Fuller, B. Iddon, and K. A. Smith, J. Chem. Soc., Perkin Trans. 1, 1997, 3465-3470
[2] Sheldrick, G.M. SADABS. Program for Empirical Absorption Correction of Area Detector, University of Göttingen, Germany. 1996.
[3] Sheldrick, G. M. SHELXL97, Program for the Refinement of Crystal Structure, University of Göttingen, Germany, 1997.

