Single-step microwave mediated synthesis of CoS₂ anode material

for high rate hybrid supercapacitors

S. Amaresh^a, K. Karthikeyan^{a,b}, Il-Chan Jang^c, and Y.S. Lee^{a,*}

^aFaculty of Applied Chemical Engineering, Chonnam National University,

Gwang-ju 500-757, Korea

^bDepartment of Mechanical and Materials Engineering, The University of Western Ontario, L

ondon, Ontario, N6A 5B9, Canada

^cDepartment of Applied Chemistry, Faculty of Engineering, Kyushu University,

744 Motooka, Fukuoka 819-0395, Japan

E-mail address: leeys@chonnam.ac.kr (Y.S. Lee).

^{*} Corresponding author.

Tel.& Fax : +82 62 530 1904,

Supporting information

Figure S1: Lithiation of as-prepared conversion-type negative electrode material i.e., CoS_2 n anoflakes, at a current rate of 1.0 A g⁻¹. A fresh cell containing CoS_2 against metallic Lithium in 1M LiPF₆ (EC:DMC, 1:1 by v/v) electrolyte was galvanostatically cycled between 0.3 - 3. 0V. The cell was stabilized for 10 cycles before being used for supercapacitor application. A stable capacity of ~270 mAh g⁻¹ was obtained after 10 cycles. The cell was stopped after finis hing the discharge of 10th cycle and the composite electrode containing sulfide was immediat ely transferred to the hybrid supercapacitor (HSC) cell inside a glove box, thus assembling th e lithiated form of HSC. The HSC was further tested electrochemically for elucidating the eff ect of lithiation. There was no deviation in the specific capacitance of the lithiated form of H SC when the current rate during lithiation was changed.

Figure S2: Cyclic voltammograms of (a) non-lithiated CoS_2 and (b) lithium-doped CoS_2 bet ween 0 - 3 V at various scan rates against an AC cathode. Both cells showed typical rectangu lar shaped curves at all scan rates. More importantly, the potential of the lithiated CoS_2 electr ode was higher than that of the corresponding non-lithiated sample, which showed the positiv e effect of lithiation. The lithiated sample had a higher potential, reaching a maximum of 2.2 V, while the non-lithiated sample did not show a rise in potential.

Figure S3: (Top) Evaluation of half cells of CoS_2 and activated carbon and optimization of th e mass ratio based on the individual capacity obtained. An optimized mass ratio of 1:3 for AC vs. CoS_2 was achieved and used throughout the study. The voltage of the hybrid supercapacit or CoS_2/AC was limited to 0-3V for safe operation in order to avoid electrolyte decompositio n. (Bottom) Cycle life characteristics of CoS_2/Li half cell at 1 mA g⁻¹ between 0.3 and 3.0V.

Figure S4: Cycling curves of hybrid supercapacitors operating at a current rate of 2.7 A g^{-1} c ontaining non-lithiated and lithiated CoS₂ active materials against the AC cathode.

Figure S5: XPS spectra of as-prepared CoS₂ nanoflakes showing the Co 2p and S 2p bands.

Calculation for energy and power density:

The specific energy density (ED) and power density (PD) for the cells were determined from charge-discharge studies as follows:

$$PD = IV/2m (W kg^{-1})$$

ED = PD x t/3600 (Wh kg^{-1})

where m is the mass of active materials from both electrodes, I the current applied, t the disch arge time and V the cell voltage.