Electronic Supplementary Information (ESI) for

Study of a Magnetic-Cooling Material Gd(OH)CO₃

Yan-Cong Chen,^a Lei Qin,^b Zhao-Sha Meng,^a Ding-Feng Yang,^b Chao Wu,^{*b} Zhendong Fu,^c Yan-Zhen Zheng,^{*b} Jun-Liang Liu,^a Róbert Tarasenko,^d Martin Orendáč,^{*d} Jan Prokleška,^e Vladimír Sechovský,^e and Ming-Liang Tong^{*a}

^a Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry & Chemical Engineering, Sun Yat-Sen University, Guangzhou, 510275, China. E-mail: tongml@mail.sysu.edu.cn

^b Frontier Institute of Science and Technology, and College and Science, Xi'an Jiaotong University, Xi'an 710054, China. E-mail: chaowu@mail.xjtu.edu.cn; zheng.yanzhen@mail.xjtu.edu.cn

^c Institut für Festkörperforschung, Forschungszentrum Jülich 52425 Jülich, Germany.

^d Centre of Low Temperature Physics Faculty of Science, P.J. Šafárik University and Institute of Experimental Physics SAS, Park Angelinum 9, 041 54 Košice, Slovakia. E-mail: martin.orendac@upjs.sk

^e Faculty of Mathematics and Physics, Department of Condensed Matter Physics, Charles University, Ke Karlovu 5, CZ-12116 Prague 2, Czech Republic.

Gd(1)-O(1)	2.288(8)			
Gd(1)-O(1)#1	2.307(7)			
Gd(1)-O(3)#2	2.4955(17)			
Gd(1)-O(3)	2.4955(17)			
Gd(1)-O(2)#3	2.515(5)			
Gd(1)-O(2)#4	2.515(5)			
Gd(1)-O(2)#5	2.555(5)			
Gd(1)-O(2)#6	2.555(5)			
Gd(1)-O(2)#7	2.752(5)			
Gd(1)-O(2)	2.752(5)			
^{<i>a</i>} Symmetry transformations used to generate equivalent atoms:				
#1 x-1/2,y,-z+1/2	#2 x,y-1,z			
#3 $x+1/2, y, -z+1/2$	#4 x+1/2,-y-1/2,-z+1/2			
#5 - x + 1/2, -y, z + 1/2	#6 -x+1/2,y-1/2,z+1/2			
#7 x,-y-1/2,z				

Table S1. Selected Bond Lengths (Å) for Gd(OH)CO₃.^a

Table S2. Selected Bond Angles	(°) for Gd(OH)CO ₃ . ^{<i>a</i>}

O(1)-Gd(1)-O(1)#1	135.5(2)	O(3)#2-Gd(1)-O(2)#6	71.4(2)
O(1)-Gd(1)-O(3)#2	89.91(19)	O(3)-Gd(1)-O(2)#6	121.7(2)
O(1)#1-Gd(1)-O(3)#2	81.35(19)	O(2)#3-Gd(1)-O(2)#6	95.09(12)
O(1)-Gd(1)-O(3)	89.91(19)	O(2)#4-Gd(1)-O(2)#6	68.33(19)
O(1)#1-Gd(1)-O(3)	81.35(19)	O(2)#5-Gd(1)-O(2)#6	51.2(2)
O(3)#2-Gd(1)-O(3)	155.0(3)	O(1)-Gd(1)-O(2)#7	73.69(19)
O(1)-Gd(1)-O(2)#3	72.4(2)	O(1)#1-Gd(1)-O(2)#7	67.66(19)
O(1)#1-Gd(1)-O(2)#3	140.47(16)	O(3)#2-Gd(1)-O(2)#7	49.3(2)
O(3)#2-Gd(1)-O(2)#3	133.5(2)	O(3)-Gd(1)-O(2)#7	107.0(2)
O(3)-Gd(1)-O(2)#3	69.7(2)	O(2)#3-Gd(1)-O(2)#7	145.87(12)
O(1)-Gd(1)-O(2)#4	72.4(2)	O(2)#4-Gd(1)-O(2)#7	108.37(18)
O(1)#1-Gd(1)-O(2)#4	140.47(16)	O(2)#5-Gd(1)-O(2)#7	144.66(8)
O(3)#2-Gd(1)-O(2)#4	69.7(2)	O(2)#6-Gd(1)-O(2)#7	113.41(5)
O(3)-Gd(1)-O(2)#4	133.5(2)	O(1)-Gd(1)-O(2)	73.69(19)
O(2)#3-Gd(1)-O(2)#4	64.0(2)	O(1)#1-Gd(1)-O(2)	67.66(19)
O(1)-Gd(1)-O(2)#5	140.24(18)	O(3)#2-Gd(1)-O(2)	107.0(2)
O(1)#1-Gd(1)-O(2)#5	77.4(2)	O(3)-Gd(1)-O(2)	49.3(2)
O(3)#2-Gd(1)-O(2)#5	121.7(2)	O(2)#3-Gd(1)-O(2)	108.37(18)
O(3)-Gd(1)-O(2)#5	71.4(2)	O(2)#4-Gd(1)-O(2)	145.87(12)
O(2)#3-Gd(1)-O(2)#5	68.33(19)	O(2)#5-Gd(1)-O(2)	113.41(5)
O(2)#4-Gd(1)-O(2)#5	95.09(12)	O(2)#6-Gd(1)-O(2)	144.66(8)
O(1)-Gd(1)-O(2)#6	140.24(18)	O(2)#7-Gd(1)-O(2)	57.9(2)
O(1)#1-Gd(1)-O(2)#6	77.4(2)		

#1 x-1/2,y,-z+1/2 #3 x+1/2,y,-z+1/2 #5 -x+1/2,-y,z+1/2 #7 x,-y-1/2,z

^aSymmetry codes: #2 x,y-1,z #4 x+1/2,-y-1/2,-z+1/2 #6 -x+1/2,y-1/2,z+1/2

Figure S1 Temperature-dependencies of the magnetic susceptibility (χ_m). The temperature range is 0.46 K ~ 300 K and the applied field is 0.2 T. The red solid line represents the least-square fit for Curie-Weiss law.

Figure S2 Temperature-dependencies of the magnetic entropy normalized to the gas constant in selected applied fields. Lines are guides to the eyes.

Figure S3 (a) Schematic representation of the spin exchange paths J_1 - J_4 of a Gd(OH)CO₃ supercell (a 2b c) projected in *bc* plane. (b)-(f) are the five ordered spin states FM, AFM1, AFM2, AFM3, AFM4 of Gd(OH)CO₃. The blue ball and white ball represent the Gd₃₊ ions with up-spin and down-spin, respectively.

Figure S4 Spin polarized DOS of Gd(OH)CO₃ in the FM configuration. (a) Total density of states (b) projected density of states of the Gd atom.