Limiting factors for photochemical charge separation in $BiVO_4/Co_3O_4$, a highly active photocatalyst for water oxidation in sunlight

Jiarui Wang^{*a*} and Frank E. Osterloh^{*a*}

Electronic Supplementary Information

The synthesis of BiVO₄ involved a solid-solution reaction and 673 K calcination as described previously. ¹⁸ The crystal structures of both uncalcined and calcined BiVO₄ were verified by powder X-ray diffraction (Figure S1). The XRD patterns agreed well with standard card 00-014-0688 (space group: I2/a, a = 5.195, b = 11.701, c = 5.092, β = 90.38), showing the monoclinic scheelite structure of obtained BiVO₄. The monoclinic form is found to be more active under visible light than the tetragonal one. ^{4, 5, 8} High activity was noted for BiVO₄ nanoplates terminated by 001 facets.⁶

Figure S1. XRD of BiVO₄ before and after calcining

Figure S2. SEM images of $BiVO_4$ (A) before and (B) after calcination, (C) Chem-Co₃O₄-BiVO₄ and (D) Phys-Co₃O₄-BiVO₄

Butler-Ginley calculation of flat-band potentials

1st Ionization Energy:

Oxygen 13.61806 eV, Cobalt 7.8810 eV, Bismuth 7.2856 eV, Vanadium 6.7462eV

David R. Lide (ed), *CRC Handbook of Chemistry and Physics*, 84th Edition. CRC Press. Boca Raton, Florida, 2003; Section 10, Atomic, Molecular, and Optical Physics; Ionization Potentials of Atoms and Atomic Ions

Electron Affinity:

Oxygen 1.4611134(9) eV

Chaibi, W. and Pelaez, R.J. and Blondel, C. and Drag, C. and Delsart, C., Eur. Phys. J. D58, 29 (2010)

Bismuth 0.942362(13) eV

Rene C. Bilodeau and Harold K. Haugen, Phys. Rev. A, 2001, 64, 024501

10.1103/PhysRevA.64.024501

Cobalt 0.6633(6) eV

Scheer, M.; Brodie, C.A.; Bilodeau, R.C.; Haugen, H. K. Phys. Rev. A, 2001, 58,205162

Vanadium 0.526(12) eV

Feigerle, C.S., Corderman, R.R., Bobashev, S.V. and Lineberger, W.C. (1981). Binding energies and structure of transition metal negative ions. J. Chem. Phys. 74, 1580 doi:10.1063/1.441289.

Mulliken Electronegativity for BiVO₄:

O = (13.61806 + 1.4611)/2 = 7.53958

Co=(0.6634+7.8810)/2=4.2722

Bi=(0.9424+7.2856)/2=4.114

V=(0.5261+6.7462)/2=3.63615

Mulliken Electronegativity for

 $Co_3O_4 = (7.54^{4}*4.27^{3})^{(1/7)} = 5.9093$

 $BiVO_4 = (4.114*3.63615*7.53958^4)^{(1/6)} = 6.0355$

 $E_{VB} = X-4.44 + E_G/2$

 Co_3O_4 : O²⁻ to Co²⁺ 2.2eV O²⁻ to Co³⁺ 1.6 eV

 $Co_3O_4=5.91-4.44+1.6/2=5.91-4.44+0.8=2.27$ V for BG 1.6eV, +1.03 = 2.5 eV for BG 2.07eV

CB=0.43 eV VB=2.5 eV, at PZC

BiVO₄: 2.45eV (I) 2.6 eV (D)

BiVO₄ = 6.04-4.44+2.45/2= 2.83 V

CB=0.38 eV VB=2.83 eV, at PZC

Pzc of BiVO₄ = 3, *Chem. Mater.* **2008**, *20*, 6346–6351,

Pzc of $Co_3O_4 = 7$, Electrochimica Acta, Vol. 40. No. 16, Pp. 2683-2686, 1995

At pH 7,

BiVO ₄ : (3-7)*0.06 = -0.24 V	CB = 0.38-0.24=0.14 V, VB = 2.83-0.24=2.59 V
Co_3O_4 : (7.3-7)*0.06 = - 0.02 V	CB = 0.41 V, VB = 2.48 V

Table S1.	Comparison	of oxygen	evolution	catalysts
		10-		

Catalyst	Sacrificial agent	O ₂ evolution rate (umol/h/g)	Reference
Pt(0.5wt%)-WO ₃	4mM NaIO ₃	300	J. Phys. Chem. B 2005, 109, 16052-16061
WO ₃	10mM AgNO ₃	504	J. Phys. Chem. B 2005, 109, 16052-16061
Pt(0.5wt%)-BiVO ₄	4mM NaIO ₃	88	J. Phys. Chem. B 2005, 109, 16052-16061
BiVO ₄	10 mM AgNO ₃	960	J. Phys. Chem. B 2005, 109, 16052-16061
BiVO ₄ (nanoplate)	0.05M AgNO ₃	5500	Chem. Commun., 2010 , 46, 1893–1895
TaON	0.01M AgNO ₃	3300	Chem. Commun., 2002, 1698–1699
BiVO ₄	0.05M AgNO ₃	421	J. Am. Chem. Soc. 1999, 121, 11459-11467
BiVO ₄	0.05M AgNO ₃	220	Chem. Mater. 2001, 13, 4624-4628
PbBi ₂ Nb ₂ O ₉ -1wt% Pt	0.05M AgNO ₃	520	J. Am. Chem. Soc. 2004, 126, 8912-8913
TiO _{2-x} N _x -1wt% Pt	0.05M AgNO ₃	221	J. Am. Chem. Soc. 2004, 126, 8912-8913

N doped TiO ₂ -Pt	AgNO ₃	21	J. Am. Chem. Soc. 2004, 126 (29), 8912–8913
PbTiO ₃ - Pt	AgNO ₃	523	J. Solid State Chem. 2006, 179 (4), 1214–1218
$Sm_2Ti_2S_2O_5-Pt$	AgNO ₃	55	J. Am. Chem. Soc. 2002, 124 (45), 13547–13553
PbBi ₄ Ti ₄ O ₁₅ - Pt	AgNO ₃	1443	J. Solid State Chem. 2006, 179 (4), 1214–1218
$\begin{array}{c} K_{0.5}La_{0.25}Bi_{0.25}Ca_{0.75}Pb_{0.}\\ _{75}Nb_{3}O_{10} \text{ - }Pt \end{array}$	AgNO ₃	560	J. Solid State Chem. 2006, 179 (4), 1214–1218
AgVO ₄	AgNO ₃	57	Phys. Chem. Chem. Phys. 2003, 5 (14), 3061– 3065
Bi ₂ MoO ₆	AgNO ₃	110	J. Phys. Chem. B 2006, 110 (36), 17790–17797
Cr:PbMoO ₄	AgNO ₃	143	J. Chem. Soc. Jpn. 2007, 80 (5), 885–893
Ta ₃ N ₅ -Pt	AgNO ₃	500	Chem. Lett. 2002, (7), 736–737
$Y_2Ta_2O_5N_2$	AgNO ₃	467	<i>Chem. Commun.</i> 2004 , (19), 2192–2193
BiVO ₄ -Co ₃ O ₄	0.02M NaIO ₄	11000	N/A

Brief calculation of sun light intensity

The location of Davis, CA is 38°33' N, 121°44' W and the experiment was conducted between 11 am to 5 pm on Oct. 31, 2014. The cosine of solar zenith angle is calculated to be 0.4854 by Solar Position Calculator (shown below), provided by U.S. Department of Commerce, National Oceanic & Atmospheric Administration (NOAA), Earth System Research Laboratory (ESRL) from website http://www.esrl.noaa.gov/gmd/grad/solcalc/sollinks.html.

r Calculator as positive ver reason,	r. Bac to the prefe	so k when the e west, in r the old	la1 his cal stead calcul	• Post culator v of the in ator. For	N SI vas ten	OAA : ition s first cronational ae rest o	ESI 1 (eate star f yo	L Cal d, we d dard o 1, we e	cul: ecided f positiv ncourag	to us ve to ge yo	or Entreme see a non-star the east of the ou to instead	h System earch Lab adard defin he Prime N click here
	Ci	ty:			Γ	Deg:	Γ	Min:	Sec	::	<u>Time Z</u>	one
Enter La	at/Lon	g>	•	Lat: Nor th=+ South=- Long:	3	8	33		0		Offset to <u>UIC</u> (MST=+7):	Daylight Saving Time:
your l:	at/long	coordina	es	East=- West=+	1	21	44		0		8	No 🔻
Note: T City pulk	o mar down	ually enter box, and	er latit enter	ude/long the value	itua	de, selec in the te	t E	nter La	t/Long	g -> i ht.	from the	
Month	:	Day:	Year	e.g. 2000):	: Time: (hh:mm:ss)						
October	۲	31	20	13		14	: 0	0	: 00		AM OP	M • 24hr
	Calculate Solar Position											
	Eq of (mi	uation Time nutes):	Dec (de	Solar lination grees):		Sola <u>Azimu</u>	r <u>th</u> :	Ele	Solar evation:		cosine of solar <u>zenith</u> <u>angle</u>	
	16.4	4	-14.3	9		216.38		29.0	4	0	.4854	

AM = 1/cos(z) = 1/0.4854 = 2.06

Based on the equation of direct solar irradiation,

$$I_D = 1.353 \cdot 0.7^{(AM^{0.678})}$$

The direct solar irradiation intensity is calculated to be 0.76 $kW/m^2 = 760 mW/cm^2$

Meinel, A. B. and Meinel, M. P., Applied Solar Energy. Addison Wesley Publishing Co.; 1976.