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S1. Materials and measurements

All chemical materials were purchased from commercial sources and used without 

further purification. The FT-IR spectra were recorded from KBr pellets in the range 

4000–400 cm-1 on a Mattson Alpha-Centauri spectrometer. XRPD patterns were 

recorded on a Siemens D5005 diffractometer with Cu Kα (λ = 1.5418 Å) radiation in 

the range of 3−60° at a rate of 5°/min. The UV-Vis absorption spectra were examined 

on a Shimadzu UV-2550 spectrophotometer in the wavelength range of 200-800 nm. 

The C, H, and N elemental analyses were conducted on a Perkin-Elmer 2400CHN 

elemental analyzer. TG curves were performed on a Perkin–Elmer TG-7 analyzer 

heated from room temperature to 1000 ºC at a ramp rate of 5 °C/min under nitrogen. 

The photoluminescence spectra were measured on a Perkin-Elmer FLS-920 

Edinburgh Fluorescence Spectrometer. 

S2. X-ray crystallography

Single-crystal X-ray diffraction data for 1–5 were recorded by using a Bruker Apex 

CCD diffractometer with graphite-monochromated Mo-Kα radiation (λ = 0.71069 Å) 

at 293 K. Absorption corrections were applied by using a multi-scan technique. All 

the structures were solved by Direct Method of SHELXS-97 and refined by full-

matrix least-squares techniques using the SHELXL-97 program within WINGX. Non-

hydrogen atoms were refined with anisotropic temperature parameters. 

The detailed crystallographic data and structure refinement parameters for 1−5 are 

summarized in Table S1.
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S3. Gas sorption experiments 

The N2 and CO2 sorption measurements were performed on automatic volumetric 

adsorption equipment (Belsorp mini II). Before gas adsorption measurements, the 

samples 1-5 were immersed in CH2Cl2 for 24 h, and the extracts were decanted. Fresh 

CH2Cl2 was subsequently added, and the crystals were allowed to stay for an 

additional 24 h to remove the nonvolatile solvates (DMA). After the removal of 

dichloromethane by decanting, the samples were activated by drying under a dynamic 

vacuum at room temperature overnight. Before the measurement, the samples were 

dried again by using the ‘outgas’ function of the surface area analyzer for 12 h at 90 

ºC. Meanwhile, the activated samples 1a were immersed in water, HCl (pH = 2) and 

NaOH (pH = 12) solutions. After the removal of water by decanting, the samples 1a 

were tested N2 sorption measurements. The results show water and acid/alkaline 

solutions destroyed the framework in a certain degree, although XRPD patterns keep 

the same. 

S4. Heat of adsorption calculation for gas uptake

The isosteric heat of adsorption values were calculated using the Clausius–Clapeyron 

equation:

ln(P1/P2)= Habs  (T2 - T1) / R T1 T2 (1)

                               Where Pi = pressure for isotherm i

                                    Ti = temperature for isotherm i

R = 8.315 J / (K*mol)

The equation can be applied to calculate the enthalpy of adsorption of a gas as a 

function of the quantity of gas adsorbed.
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Fig. S1 Representations of the crystal structures of 1 (a), 2 (b) and 5 (c).

Fig. S2 X-ray powder diffraction patterns of simulated (black), as-synthesized (red) 

and activated samples (blue) of1 (a), 2 (b), 3 (c), 4 (d) and 5 (e), respectively.
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Fig. S3 TG curves of 1 (a), 2 (b), 3 (c), 4 (d) and 5 (e).
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Fig. S4 XRPD patterns of 1-5: as-synthesized (red), and treated in ambient 

temperature (yellow) and boiling water (green) of a) 1, b) 2, c) 3, d) 4, e) 5.
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Fig. S5 XRPD patterns of 1-5: as-synthesized (red), after soaking in acid (pH = 2, 

blue), alkaline solutions (pH = 12, green) and exposed in air (purple) of a) 1, b) 2, c) 3, 

d) 4, e) 5.
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Fig. S6 The nitrogen sorption isotherms of 1a after (a) water, (b) HCl (pH = 2) and (c) 

NaOH (pH = 12) treatment.

Fig. S7 The pore size distribution of a) 1, b) 2 and c) 3.



9

Fig. S8 Isosteric heats of CO2 adsorption (Qst) for 1.

Fig. S9 Isosteric heats of CO2 adsorption (Qst) for 2.
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Fig. S10 Isosteric heats of CO2 adsorption (Qst) for 3.

Fig. S11 Isosteric heats of CO2 adsorption (Qst) for 4.
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Fig. S12 Isosteric heats of CO2 adsorption (Qst) for 5.
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Fig. S13 (a) Photoinduced solid state emission spectra of 1, its I2-loaded samples 

luminescence change at 0~30 min (λex = 311 nm and λem = 405 nm). (b) After 

immersed in ethanol for 25 min, the luminescence intensity of 1 was gradually 

recovered.
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Fig. S14 The photographs for 1 of adsorption (hexane) and releasing I2 (ethanol) in 

two cycles.

Fig. S15 X-ray powder diffraction patterns of 1 after releasing I2 in second (dark 

yellow) and first cycle (green), 1 soaked in a hexane solution (0.03 mol·L-1 ) of I2 at 

room temperature for 60 minutes (blue), as-synthesized (red) and simulated 1 (black).
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Fig. S16 Photographs and UV/Vis spectra of aqueous solutions of mixture of MO 

and MB dyes with (a) 2, (b) 4 and (c) 5 (UV/Vis spectra of dye releasing in MeOH 

are showed at the top).
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Table S1 Crystal data and structure refinements for 1-5.

1 2 3 4 5

Formula C13H19N7O6Zn2 C17H22N8O6Zn2 C17H20N7O6BrZn2 C21H23N7O6Zn2 C26H30N8O7Zn2

Formula weight 500.09 565.17 629.05 600.20 697.32

Crystal system tetragonal tetragonal tetragonal tetragonal triclinic

Space group P4/ncc P4/ncc P 4/n I/4m P -1

a (Å) 13.673(5) 13.530(5) 13.635(5) 13.794(5) 13.628(5)

b (Å) 13.673(5) 13.530(5) 13.635(5) 13.794(5) 13.644(5)

c (Å) 22.794(5) 27.172(5) 27.026(5) 27.262(5) 19.080(5)

α (°) 90.000(5) 90.00 90.000(5) 90.00 109.41

β (°) 90.000(5) 90.00 90.000(5) 90.00 91.28

γ (°) 90.000(5) 90.00 90.000(5) 90.00 90.88

V (Å3) 4261(2) 4974(4) 5024(3) 5187(3) 3344.3(19)

Z 8 8 8 8 4

Dcalcd.[gcm-3] 1.559 1.509 1.663 1.537 1.385

F(000) 2032 2304 2512 2448 1432

Reflections collected 21664/2064 23555/2200 25720/4428 11277/1854 16642/10891

R(int) 0.0418 0.0393 0.0576 0.0594 0.0298

Goodness-of-fit on F2 1.032 1.011 1.119 1.005 0.924

R1
a [I>2σ (I)] 0.0320 0.0410 0.0870 0.0794 0.0612

wR2
b 0.0912 0.1471 0.2734 0.1924 0.1586
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Table S2 The comparison of experimental pore volume and theoretical value.

Experimental pore volume (cm3 g-1) Theoretical pore volume (cm3 g-1)

1a 0.212 0.434

2a 0.320 0.381

3a 0.245 0.299

Table S3 The comparison of adsorption amount and surface area.

Treatment Original H2O HCl 

(pH=2)

NaOH

(pH=12)

N2 adsorption 

amount (cm3/g)

118 94 84 97

SBET

(m2 g-1)
363 165 162 150
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Table S4 CO2-uptakes and enthalpy of adsorption for selected MOFs and 1.

Materials
V(CO2)
(cm3 g-1)

Qst(CO2)
[KJ mol-

1]

Reference

273K 298K
1 103.7 70.2 33 This work

bio-MOF-11 -- 92 45 [1]
[Co3(ndc)(HCOO)3(3-OH)(H2O)]n 127 70 41 [2]

SNU-50’ 120 80 25.8 [3]
HKUST-1 (295K) -- 72.6 23.3 [4]

MOF-177 -- 23.6 15.7 [4]
IRMOF-3 -- 30.4 17.4 [4]

Tbo-MOF-2 109 62 35.2 [5]
Zn2(BME-bdc)2(bpee)·2DMF 52 33 -- [6]
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Table S5 The Qst at zero coverage of CO2 for 1-5.

1 2 3 4 5

Qst at zero 

(KJ mol-1)

33.06 32.22 23.50 25.84 26.24


