Supporting Information

Hierarchical Orthorhombic $\mathbf{V}_{2} \mathbf{O}_{5}$ Hollow Nanospheres as High Performance Cathode

Materials for Sodium-Ion Batteries

Dawei Su, ${ }^{a, b}$ Shixue Dou*b and Guoxiu Wang*a
${ }^{a}$ Centre for Clean Energy Technology, School of Chemistry and Forensic Science, Faculty of Science, University of Technology, Sydney, NSW 2007, Australia.
${ }^{b}$ Institute for Superconducting and Electronic Materials, University of Wollongong, Wollongong, NSW 2522, Australia

Crystallographic Data

Table S1. Crystallographic data and Rietveld refinement of vanadyl acetylacetonate (VO(acac) $)_{2}$).

Crystal information	Crystallographic data
Crystal system	Triclinic
Space group	$P^{\overline{2}}($ No. 2$)$
a / \AA	7.5258
b / \AA	8.2242
c / \AA	11.2321
$\alpha /{ }^{\circ}$	73.0599
$\beta /{ }^{\circ}$	71.3566
$\gamma /{ }^{\circ}$	66.6140
Cell volume / \AA^{3}	593.7
Z	2
χ^{2}	7.3
R_{wp}	8.76%
R_{p}	8.46%

Table S2. Atomic coordinates and occupancies with atomic displacement parameters of $\mathrm{VO}(\mathrm{acac})_{2}$.

Atom	\mathbf{x}	\mathbf{y}	\mathbf{z}	\mathbf{g}
V	0.14364	0.29028	0.22359	1.00
O1	0.94067	0.41418	0.36046	1.00
O2	0.99809	0.12126	0.26991	1.00
O3	0.14724	0.53608	0.13733	1.00
O4	0.22006	0.23025	0.05358	1.00
O5	0.33170	0.18871	0.27989	1.00
O6	0.27538	0.53735	0.44054	1.00
C1	0.82264	0.35208	0.45730	1.00
C2	0.78383	0.19642	0.46715	1.00
C3	0.86745	0.09227	0.37096	1.00
C4	0.79023	0.94101	0.38409	1.00
C5	0.77673	0.21653	0.01324	1.00
C6	0.22156	0.59188	0.02015	1.00
C7	0.70410	0.50906	0.07607	1.00
C8	0.70721	0.68623	0.05760	1.00
C9	0.63088	0.78568	0.16710	1.00

Table S3. Selected interatomic distances in $\mathrm{VO}(\mathrm{acac})_{2}$.

Atoms	Distance / \AA	
V	O1	1.978
V	O2	1.956
V	O3	1.978
V	O4	1.960
V	O5	1.558
O1	V	1.978
O1	C1	1.285
O2	V	1.956
O2	C3	1.275
O3	C6	1.279
O4	C8	1.301
O6	C1	1.491
C1	O6	1.491
C1	C2	1.389
C2	C3	1.405
C3	C4	1.523
C4	C3	1.523
C5	C6	1.514
C6	C5	1.514
C6	C7	1.392
C7	C6	1.392
C7	C8	1.419
C8	O4	1.301
C8	C9	1.508

Table S4. Crystallographic data and Rietveld refinement of vanadyl ethylene glycolate (VEG).
Crystal information Crystallographic data

Crystal system	Monoclinic
Space group	C2/C (No. 15)
a / \AA	9.2717
b / \AA	9.7350
c / \AA	9.9179
$\alpha /{ }^{\circ}$	90.0000
$\beta /{ }^{\circ}$	105.9814
$\gamma /{ }^{\circ}$	90.0000
Cell volume $/ \AA^{3}$	860.592
Z	8
χ^{2}	8.6
$\mathrm{R}_{\text {wp }}$	9.98%
R_{p}	7.21%

Table S5. Atomic coordinates and occupancies of VEG.

Atom	\mathbf{x}	\mathbf{y}	\mathbf{z}	\mathbf{g}
V	-0.01650	0.12390	0.09170	1.00
C1	0.27100	0.03000	0.27000	1.00
C2	0.27900	0.01600	0.13200	1.00
O1	-0.01150	0.26730	0.01920	1.00
O2	0.14260	0.10020	0.27850	1.00
O3	0.12850	0.02320	0.03200	1.00
H1	0.25175	-0.08639	0.27265	1.00
H2	0.37207	0.03481	0.33776	1.00
H3	0.33618	0.12836	0.12806	1.00
H4	0.37036	-0.03659	0.11670	1.00

Table S6. Selected interatomic distances in VEG.

Atoms		Distance / \AA
V	O1	1.577
V	O2	1.976
V	O3	1.983
C1	C2	1.398
C1	O2	1.395
C1	H1	1.148
C1	H2	0.993
C2	O3	1.474
C2	H3	1.221
C2	H4	1.036
O2	V	1.976
O3	V	1.983

Table S7. Crystallographic data and Rietveld refinement of $\mathrm{V}_{2} \mathrm{O}_{5}$ nanospheres.

Crystal information	Crystallographic data
Crystal system	orthorhombic
Space group	Pmmn (No. 59)
a / \AA	11.4914
b / \AA	3.5577
c / \AA	4.3696
$\alpha /{ }^{\circ}$	90.0000
$\beta /{ }^{\circ}$	90.0000
$\gamma /{ }^{\circ}$	90.0000
Cell volume / \AA^{3}	178.643
Z	2
χ^{2}	5.71
R_{wp}	5.48%
R_{p}	7.42%

Table S8. Atomic coordinates and occupancies of $\mathrm{V}_{2} \mathrm{O}_{5}$ nanosphere.

Atom	\mathbf{x}	\mathbf{y}	\mathbf{z}	\mathbf{g}
V	0.60120	0.25000	0.10860	1.00
O1	0.43090	0.25000	-0.00200	1.00
O2	0.60450	0.25000	0.46970	1.00
O3	0.75000	0.25000	0.00080	1.00

Table S9. Selected interatomic distances in $\mathrm{V}_{2} \mathrm{O}_{5}$ nanosphere.

Atoms		Distance / \AA
V	O1	2.016
V	O2	1.578
V	O3	1.774
V	O1	1.875
V	O1	1.875
O1	V	1.875
O1	V	1.875
O3	V	1.774

Table S10. Elastic constants for polycrystalline $\mathrm{V}_{2} \mathrm{O}_{5}$.

Axis	Young's Modulus (GPa)	Poisson Ratios	
X	115.43402	$\mathrm{E}_{\mathrm{xy}}=.03361$	$\mathrm{E}_{\mathrm{xz}}=0.4964$
Y	187.04257	$\mathrm{E}_{\mathrm{yx}}=0.5445$	$\mathrm{E}_{\mathrm{yz}}=0.0032$
Z	56.36276	$\mathrm{E}_{\mathrm{zx}}=0.2424$	$\mathrm{E}_{\mathrm{zy}}=0.0010$

Table S11. Crystallographic data and Rietveld refinement of discharged $\mathrm{NaV}_{2} \mathrm{O}_{5}$ nanospheres.

Crystal information	Crystallographic data
Crystal system	orthorhombic
Space group	Pmmn (No. 59)
a / \AA	11.2616
b / \AA	3.6073
c / \AA	4.8810
$\alpha /{ }^{\circ}$	90.0000
$\beta /{ }^{\circ}$	90.0000
$\gamma /{ }^{\circ}$	90.0000
Cell volume / \AA^{3}	198.285
Z	2
χ^{2}	9.94
R_{wp}	12.53%
R_{p}	9.57%

Table S12. Atomic coordinates and occupancies of discharged $\mathrm{NaV}_{2} \mathrm{O}_{5}$.

Atom	\mathbf{x}	\mathbf{y}	\mathbf{z}	\mathbf{g}
V	0.40210	0.25000	0.39210	1.00
Na	0.75000	0.25000	0.13990	1.00
O 1	0.38540	0.25000	0.05860	1.00
O 2	0.57310	0.25000	0.48780	1.00
O 3	0.25000	0.25000	0.51950	1.00

Table S13. Selected interatomic distances in discharged $\mathrm{NaV}_{2} \mathrm{O}_{5}$.

Atoms	Distance / \&	Atoms
V	O 1	1.639
V	O 2	1.982
V	O 3	1.822
V	O 2	1.917
V	O 2	1.917
O 2	V	1.917
O 2	V	1.917
O 3	V	1.822

Figure S1. Low (a, b) and high (c) magnification FESEM images of VEG nanospheres. The inset in (b) shows the magnified view of hollow feature. (c) Features of an individual VEG nanosphere. (d) Corresponding TEM image of a single VEG nanosphere. (e) Lattice resolution HRTEM image taken from the marked region in (d). (f) Atomic resolution HRTEM image. Inset in (f) is the fast Fourier-transform (FFT) pattern along the [110] zone axis of VEG.

Figure $\boldsymbol{S} 2$. Low magnification TEM image (a) and corresponding selected area electron diffraction (SAED) ring pattern (b) of the VEG hollow nanospheres.

Figure S3. Rietveld refinement patterns of X-ray diffraction data for vanadyl acetylacetonate (VO(acac) $)_{2}$) (a) and vanadyl ethylene glycolate (VEG) (b) crystals. The observed and calculated intensities are represented by red crosses and the blue solid line, respectively. The bottom purple line shows the fitting residual difference. Bragg positions are represented as light-green ticks. The insets in (a) and (b) are refined structural models of triclinic VO(acac) $)_{2}$ and monoclinic VEG, respectively. The diffraction symmetry confirms that $\mathrm{VO}(\mathrm{acac})_{2}$ crystals are triclinic, with the $\mathrm{P}^{\overline{1}}$ space group. The lattice parameters of $\mathrm{VO}(\mathrm{acac})_{2}$ were calculated as: $a=7.5258 \AA, b=8.2242 \AA$, $c=11.2321 \AA$, and $\alpha=73.0599^{\circ}, \beta=71.3566^{\circ}, \gamma=66.6140^{\circ}$, with satisfactory convergence factors $\left(\chi^{2}=7.3, R_{w p}=8.76 \%, R_{p}=8.46 \%\right)$, which is consistent with previously reported $\mathrm{VO}(\mathrm{acac})_{2}{ }^{1}$ Detailed crystallographic data on $\mathrm{VO}(\mathrm{acac})_{2}$ are listed in Tables S1-S3. All diffraction peaks of VEG can be indexed to the monoclinic phase with space group $\mathrm{C} 2 / \mathrm{C}$. The lattice parameters were calculated to be $a=9.2717 \AA, b=9.7350 \AA, c=9.9179 \AA$, and $\beta=$ $105.9814^{\circ}\left(\chi^{2}=8.6, R_{w p}=9.98 \%, R_{p}=7.21 \%\right)$. No impurity phases were observed. The refined crystal structure is shown as the inset in Figure S3(b), from which the chain structure of $\mathrm{VO}\left(\mathrm{OCH}_{2}-\mathrm{CH}_{2} \mathrm{O}\right)$ is visible. More crystallographic data on VEG are listed in Tables S4-S6.

Figure S4. TG/DTA curves of VEG. Two regions with different slopes can be observed in the weight loss curve. The first, $\sim 10 \%$ weight loss below $220{ }^{\circ} \mathrm{C}$, should correspond to the evaporation of moisture or gaseous contents in the porous material, as well as hydrous groups attached to the VEG crystals, while the main weight loss ($\sim 20 \%$) that took place between 220 and $340^{\circ} \mathrm{C}$ is likely to be related to the phase transition of VEG.

Figure S5. Simulated bulk Pmmn- $\mathrm{V}_{2} \mathrm{O}_{5}$ XRD pattern, in which the (001) and (110) diffraction peaks are indexed for comparison of the relative intensity.

Figure S6. XRD patterns of $\mathrm{V}_{2} \mathrm{O}_{5}$ synthesized at different sintering temperatures (350, 400, and $500{ }^{\circ} \mathrm{C}$).

Figure S7. Schematic diagram of Na^{+}ions inserted into $\mathrm{V}_{2} \mathrm{O}_{5}$ along the [010] direction. V, O, and Na atoms are coloured in tan, green, and red, respectively.

Figure S8. FESEM images of the as-prepared $\mathrm{V}_{2} \mathrm{O}_{5}$ hollow nanospheres at different magnifications.

Figure S9. Low magnification TEM image (a) and corresponding selected area electron diffraction (SAED) ring pattern (b) of the as-prepared $\mathrm{V}_{2} \mathrm{O}_{5}$ hollow nanospheres.

Figure S10. Low (a, c), and high (b, d) magnification FESEM images of the as-prepared $\mathrm{V}_{2} \mathrm{O}_{5}$
hollow nanospheres obtained by sintering the VEG precursor at $400^{\circ} \mathrm{C}(\mathrm{a}, \mathrm{b})$, and $500{ }^{\circ} \mathrm{C}(\mathrm{c}, \mathrm{d})$.

Figure S11. FT-IR spectra of PVP, VO(acac $)_{2}$, EG, VEG, and $\mathrm{V}_{2} \mathrm{O}_{5}$.

Figure S12. Orthorhombic $\mathrm{V}_{2} \mathrm{O}_{5}$ crystal structure, in which the six-fold coordinated V and three types of structurally different oxygen atoms are present.

Figure S13. The as-prepared VEG without the addition of PVP.

Figure S14. $1^{\text {st }}-5^{\text {th }}$ cyclic voltammograms of $\mathrm{V}_{2} \mathrm{O}_{5}$ hollow nanosphere cathodes in sodium ion cells.

Figure S15. $1^{\text {st }}$ and $2^{\text {nd }}$ cycle charge and discharge profiles of $\mathrm{V}_{2} \mathrm{O}_{5}$ hollow nanospheres at current densities of $40,80,160$, and $320 \mathrm{~mA} \mathrm{~g}^{-1}$.

Figure S16. $1^{\text {st }}, 2^{\text {nd }}$, and $100^{\text {th }}$ cycle discharge and charge profiles of $\mathrm{V}_{2} \mathrm{O}_{5}$ hollow nanospheres at current densities of $640 \mathrm{~mA} \mathrm{~g}^{-1}(\mathrm{a})$, and $1280 \mathrm{~mA} \mathrm{~g}^{-1}(\mathrm{~b})$.

Figure S17. FESEM image (a) and XRD pattern (b) of solid Pmmn $\mathrm{V}_{2} \mathrm{O}_{5}$ nanocrystals.

Figure S18. $1^{\text {st }}, 2^{\text {nd }}$, and $3^{\text {rd }}$ cycle discharge and charge profiles (a) and cyclability (b) of solid $\mathrm{V}_{2} \mathrm{O}_{5}$ nanocrystals at current density of $80 \mathrm{~mA} \mathrm{~g}^{-1}$.

Figure S19. Refined structural model of $\mathrm{Pmmn} \mathrm{NaV}_{2} \mathrm{O}_{5}$, viewed along the [001] direction. The brown base-faced square-pyramidal VO_{5} unit is composed of one vanadium atom and five oxygen atoms, which are coloured yellow and red, respectively, while the Na^{+}ions are coloured in green.

Reference:

(1) Dodge, R. P.; Templeton, D. H.; Zalkin, J. Chem. Phys. 1961, 35, 55.

