Photoactive Fe₂O₃/Cu₂O Heterostructured

Nanocrystals

Peter Mirtchev[†], Kristine Liao[†], Elizabeth Jaluague[‡], Yao Tian[‡], Kenneth S. Burch^{‡,§}, Doug D. Perovic[§], Geoffrey Ozin^{†,*}

⁺ Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, Canada, M5S 3H6

¹Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, Ontario, Canada, K7L 3N6

‡ Department of Physics, University of Toronto, 60 St. George Street, Toronto, Ontario, Canada, M5S 1A7

§ Department of Materials Science and Engineering, 184 College Street, Toronto, Ontario, Canada, M5S 3E4

Supporting Information

Figure S1. ¹H NMR spectrum of Fe(oleate)₃ precursor acquired in CDCl₃

Figure S2. IR Spectrum of Fe(oleate)₃ precursor

Figure S3. TGA scans of $Fe(oleate)_3$ and Cu(I) acetate under N_2 showing decomposition temperatures of the organometallic precursors

Figure S4. a) Representative TEM image and particle size distribution of isolated Cu_2O nanocrystals **b)** Representative TEM image and particle size distribution of isolated γ -Fe₂O₃ nanocrystals

Figure S5. Particle size distribution of the γ - Fe₂O₃ and Cu₂O domains in as-synthesized hetero-nanocrystals in dimer and oligomer morphologies.

Figure S6. a) Representative TEM image of HNCs showing dimer and trimer morphologies. b) TEM image of a physical mixture of γ -Fe₂O₃ and Cu₂O showing the absence of any ordering into hetero-architectures

Figure S7. a) & b) Low resolution TEM images of Fe_2O_3/Cu_2O HNCs after size selective precipitation removing the majority of trimers and higher oligomers. **c)** Particle size distribution following size-selective precipitation treatment of the Fe_2O_3/Cu_2O nanocrystals.

Figure S8. XPS survey spectra of a) γ -Fe₂O₃ nanocrystals b) Cu₂O particles and c) γ -Fe₂O₃/Cu₂O HNCs

Figure S9. Optical absorption spectra of **a**) pure γ -Fe₂O₃ **b**) pure Cu₂O and **c**) γ -Fe₂O₃/Cu₂O HNCs manipulated using the Tauc relation (see reference 58 in the manuscript) to determine their optical bandgaps

Figure S10. Infrared transmission spectra of as γ -Fe₂O₃/Cu₂O HNCs before and after ligand exchange with NOBF₄ showing removal of the oleate capping ligands