Journal of Materials Chemistry A

Supplementary Information

Reduction on reactive pore surface as a versatile approach to monolithsupported metal alloy nanoparticles and its catalytic applications

Nirmalya Moitra, Kazuyoshi Kanamori,* Yumi H. Ikuhara, Xiang Gao, Yang Zhu, George Hasegawa, Kazuyuki Takeda, Toyoshi Shimada and Kazuki Nakanishi*

Sample ^a	HAuCl ₄ /mmol	PdCl ₂ /mmol	H ₂ PtCl ₆ /mmol	RhCl ₃ /mmol	Average Particle Size/nm						
						Au	0.040				38 ^b
						Pd		0.040			25 ^b
Pt			0.040		6 ^b						
Rh				0.040	7 ^b						
Au ₄ Pd ₁	0.032	0.008									
Au ₃ Pd ₁	0.030	0.010			27°						
Au ₂ Pd ₁	0.027	0.013									
Au ₁ Pd ₁	0.020	0.020			12°						
Au ₁ Pd ₂	0.013	0.027									
Au ₁ Pd ₃	0.010	0.030			6°						
Au ₁ Pd ₄	0.008	0.032									
Au_4Pt_1	0.032		0.008								
Au ₃ Pt ₁	0.030		0.010								
Au_2Pt_1	0.027		0.013								
Au ₁ Pt ₁	0.020		0.020		6°						
Au_1Pt_2	0.013		0.027								
Au ₁ Pt ₃	0.010		0.030								
Au ₁ Pt ₄	0.008		0.032								
Pd ₄ Rh ₁			0.032	0.008							
Pd ₃ Rh ₁			0.030	0.010							
Pd_2Rh_1			0.027	0.013							
Pd ₁ Rh ₁			0.020	0.020	6°						
Pd_1Rh_2			0.013	0.027							
Pd ₁ Rh ₃			0.010	0.030							
Pd ₁ Rh ₄			0.008	0.032							
Pt ₄ Rh ₁		0.032		0.008							
Pt ₃ Rh ₁		0.030		0.010							
Pt_2Rh_1		0.027		0.013							
Pt_1Rh_1		0.020		0.020	4°						
Pt_1Rh_2		0.013		0.027							
Pt ₁ Rh ₃		0.010		0.030							
Pt ₁ Rh ₄		0.008		0.032							
Au ₁ Pd ₁ Pt ₁	0.013	0.013	0.013		13°						
Au ₁ Pd ₁ Rh ₁	0.013	0.013		0.013	242°						
Au ₁ Pt ₁ Rh ₁	0.013		0.013	0.013	6°						
Pd ₁ Pt ₁ Rh ₁		0.013	0.013	0.013	8°						
Au ₁ Pd ₁ Pt ₁ Rh ₁	0.010	0.010	0.010	0.010	309°						

 a HSQ = 53 mg (1 mmol); metal(s) = 0.04 mmol; water = 1.0 mL; acetone = 19 mL; time = 36 h;

temperature = $50 \circ C$

^bAverage particle size derived from XRD by the Scherrer's equation. ^cAverage particle size derived from HAADF-STEM images.

Average particle size derived from HAADF-STEW init

Figure S1 (a) FT-IR spectrum of the HSQ monolith, showing Si-H, O-Si-H and Si-O-Si characteristic absorptions. (b) Nitrogen adsoprption-desorption isotherm (BET specific surface area = 800 m²/g) and BJH mesopore size distribution plot derived from adsorption branch of the isotherm (inset), showing the presence of mesopore with a size distribution mainly ranging from 2 to 10 nm. (c) Thermogravinetric analysis of the as-dried monolith in air, showing an increase in the weight above 380 °C due to the oxidation of Si-H to Si-O. No PEO remains in the monolith after washing and drying. (d) ²⁹Si solid-state CP-MAS NMR spectrum of the HSQ monolith, showing the presence of T³ and T² signals, and the absence of Q signals. This evidences the total preservation of Si-H moiety throughout the process. (e) Scanning electron microscope images of as-dried HSQ monolith, showing the presence of well-defined macroporous co-continuous structure. (f) Digital camera image of a column-shaped HSQ monolith with 5 cm in length and 0.5 cm in diameter.

(right) of the original HSQ and the Au₁Pd₁-supported HSQ.

Figure S3 (Top) HAADF-STEM images and EDS mapping of Au₃Pd₁, Au₁Pd₁ and Au₁Pd₃, (bottom) particle size distributions of Au₁Pd₃, Au₁Pd₁ and Au₁Pd₃ (left to right).

Figure S4 Formation of Au₁Pd₁ supported nanoparticles in the presence of 1 mmol (53 mg) and 20 mmol (1060 mg) of HSQ in the reaction system (E3 in Table 1), yielding 4 mol% and 0.2 mol% loaded Au₁Pd₁ nanoparticles.

Figure S5 X-ray diffraction patterns of HSQ monoliths embedded with bimetallic nanoparticles synthesized in different compositions.

Figure S6 Colleration of nominal and estimated (derived from Vegard's law) compositions of immobilized nanoparticles.

Figure S7 SEM images of the HSQ monoliths embedded with Au₁Pt₁ (left), Pt₁Rh₁ (middle) and Pd₁Rh₁ (right).

Figure S8 Particle size (in nm) distributions of Au₁Pt₁ (left), Pt₁Rh₁ (middle) and Pd₁Rh₁ (right) derived from HAADF-STEM images.

Figure S9 X-ray diffraction patterns of the multimetallic nanoparticles immobilized on HSQ.

Figure S10 XPS spectra of the multimetallic nanoparticles immobilized on HSQ.

Particle Size/ nm

Figure S11 Particle size (in nm) distributions of Au₁Pd₁Pt₁ (top left), Au₁Pd₁Rh₁ (top middle), Au₁Pt₁Rh₁ (top right), Pd₁Pt₁Rh₁ (bottom right) and Au₁Pd₁Pt₁Rh₁ (bottom right) immobilized on HSQ.

Figure S12 (left) Relationship between average particle size and $\sum (E^0/n)$ (an empirical parameter of E^0 and oxidation number *n*) in tri- and tetrametallic nanoparticles immobilized on HSQ. (right) Digital camera image of the monoliths embedded with Au₁Pd₁Pt₁, Au₁Pd₁Rh₁, Au₁Pt₁Rh₁, Pd₁Pt₁Rh₁, and Au₁Pd₁Pt₁Rh₁ (from top to bottom) nanoparticles.

Figure S13 X-ray diffraction patterns of HSQ-supported monometallic nanoparticles synthesized at 4 mol% loading (left). Digital camera image of Au, Pd, Pt and Rh (top to bottom) nanoparticle-embedded monoliths (right).

Figure S14 HAADF-STEM images of Au, Pt and Pd nanoparticles embedded in HSQ. Average particle size was derived from XRD using the Scherrer's equation.

Figure S15 Absorption spectra of mixture solutions of 4-NP and NaBH₄ in water-methanol (1:1) at different concentrations of 4-NP (left). Plot of absorbance at 400 nm against the concentration of 4-NP (right).

Figure S16 Kinetics of catalytic reduction of 4-NP using nanoparticles supported on HSQ as the catalyst.

Catalyst	TOF/h ⁻¹	<i>k</i> /h ⁻¹	Catalyst	TOF/h ⁻¹	k/h^{-1}
HSQ	0	0	Pd ₄ Rh ₁	2807.7	37.88
Au	14.0	0.14	Pd ₃ Rh ₁	3926.8	63.86
Pd	1132.2	14.94	Pd_2Rh_1	2602.7	34.15
Pt	55.7	0.56	Pd ₁ Rh ₁	2109.7	26.01
Rh	1507.8	17.37	Pd_1Rh_2	2163.8	26.85
Au ₄ Pd ₁	22.0	0.22	Pd ₁ Rh ₃	3322.7	48.47
Au ₃ Pd ₁	172	1.75	Pd ₁ Rh ₄	4258.0	74.35
Au_2Pd_1	320.1	3.29	Pt ₄ Rh ₁	162.7	1.65
Au_1Pd_1	956.4	10.42	Pt ₃ Rh ₁	643.7	6.81
Au_1Pd_2	1520.5	17.54	Pt_2Rh_1	963.1	10.50
Au ₁ Pd ₃	2138.8	26.46	Pt ₁ Rh ₁	1661.4	19.49
Au ₁ Pd ₄	1120.6	13.65	Pt_1Rh_2	2276.1	30.27
Au_4Pt_1	26.0	0.26	Pt ₁ Rh ₃	3202.1	45.82
Au_3Pt_1	77.5	0.78	Pt ₁ Rh ₄	3986.0	65.62
Au_2Pt_1	132	1.34	Au ₁ Pd ₁ Pt ₁	1616.4	18.84
Au_1Pt_1	193.0	1.97	Au ₁ Pd ₁ Rh ₁	6.0	0.06
Au ₁ Pt ₂	221.8	2.26	Au ₁ Pt ₁ Rh ₁	2461.3	31.7
Au ₁ Pt ₃	256.9	2.61	$Pd_1Pt_1Rh_1$	1902.3	22.89
Au ₁ Pt ₄	117.8	1.19	Au ₁ Pd ₁ Pt ₁ Rh ₁	5.0	0.05

Table S2 TOF and rate constant (*k*) values in the reduction of 4-NP with different metal alloy nanoparticleloaded HSO monoliths as the catalyst

Figure S17 Reduction of 4-NP with and without using NaBH₄ as the reducing agent in the presence of Au₁Pd₁-embedded HSQ as the catalyst. Since no deprotonation of 4-NP occurs without NaBH₄, the maximum absorbance of 4-NP locates at 310 nm. However, in the presence of NaBH₄, deprotonation of 4-NP occurs, showing the maximum absorbance at 400 nm. It can be confirmed that the rapid catalytic reduction proceeds under the presence of NaBH₄, while virtually no reduction is observed without NaBH₄.

Figure S18 SEM images of the Pd₁Rh₄ nanoparticle-embedded monolith before and after using it as the catalyst for 4-NP reduction, showing preservation of macroporous co-continuous structure of the support HSQ even after the 10th catalytic cycle.

Figure S19 XPS results of the Pd₁Rh₄ nanoparticle-embedded monolith before and after using it as the catalyst, showing no change in the both element after 10 cycles.

Figure S20 XRD of the Pd₁Rh₄ nanoparticle-embedded monolith before and after using it as the catalyst.