Supporting Information

Enhanced desulfurization performance of PDMS membranes by incorporating silver decorated dopamine nanoparticles

Guanhua Liu^{a,b}, Tiantian Zhou^{a,b}, Wanpeng Liu^{a,b}, Shen Hu^{a,b}, Fusheng Pan^{a,b}, Hong Wu^{a,b}, Zhongyi Jiang^{*a,b}, Baoyi Wang^c, Jing Yang^c and Xingzhong Cao^c

^a Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China,
Fax: +86 22 23500086; E-mail: zhyjiang@tju.edu.cn

^b Collaborative Innovation Center of Chemical Science and Engineering (Tianjin),
 Tianjin 300072, China, Fax: +86 22 23500086; E-mail: zhyjiang@tju.edu.cn

^c Key Laboratory of Nuclear Radiation and Nuclear Energy Technology, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China, Tel: +86
10 88235404; E-mail: lizhx@ihep.ac.cn

*To whom correspondence should be addressed. E-mail: <u>zhyjiang@tju.edu.cn</u>

1. The literature data of pervaporation desulfurization

It is necessary to compare the pervaporation performance in this study to the literature data in recent years. So pervaporation performance of pervaporative desulfurization in the literatures is listed in **Table S1**. The comprehensive properties of the permeation flux and enrichment factor in this study were superior to those in many other studies.

Membrane	Active	Feed	Т	Permeate	Sulfur	Flux	Enrich	Publicat	Ref.
	layer		(°C)	pressure	content	(kg/(m ²	ment	ion year	
	thicknes			(Pa)	(ppm)	h))	factor		
	s (µm)								
PDMS-PEI	4	Thiophene	80	200	147	0.8	7.6	2010	1
		/n-heptane							
PDMS/ceram	8	Thiophene	30	210	400	5.37	4.22	2010	2
ic		/n-octane							
PEG-CuY	-	Thiophene	110	130	1190	3.19	2.95	2010	3
		/hydrocar							
		bon							
PDMS-	15	Thiophene	40	-	571	4.14	8.56	2011	4
Ag^+/TiO_2		/n-octane							
PDMS-	13–16	Thiophene	-	330	495	7.76	4.3	2012	5
Ag^{+}/SiO_{2}		/n-octane							
PEG-b-PAN	10	Thiophene	82	-	1000	0.189	2.82	2012	6
		/n-heptane							
PTFEP	13–16	Thiophene	85	300	400	0.089	9.7	2012	7
		/heptane							
EC/C ₆₀	-	five-	75	-	300	2.73	5.03	2012	8
		componen							
		t mixture ^a							
PDMS-SiO ₂	-	Thiophene	30	-	500	7.36	4.98	2012	9
		/n-octane							
PDMS-	16.0-	Thiophene	30	-	570	7.42	4.81	2013	10
dopamine/Cu	23.0	/n-octane							
Cl-PBPP	12.4	Thiophene	85	300 Pa	400	1.38	5.6	2013	11

 Table S1. Pervaporation desulfurization performance in the literatures.

		/heptane							
CuO/AMPSF	20	Thiophene	40	<800 Pa	1500	1.2	3.9	2013	12
		/n-heptane							
PEBAX	11	Thiophene	40	500 Pa	381	3.8	4.0	2014	13
/PVDF		/n-heptane							
Copolyimide-	28-32	Benzothio	100	19-30	3000	1.1	2.41	2014	14
/glycidyl-		phene		mbar					
POSS		/n-							
		dodecane							
PMePP/Mn	15	Thiophene	85	<300 Pa	294	2.1	6.5	2014	15
		/							
		<i>n</i> -heptane							
PDMS-	16.0-	Thiophene	30	-	500	8.22	5.03		This
DAAg	25.0	/n-octane							study

^aMixture consists of *n*-heptane, cyclohexane, cyclohexene, toluene, and thiophene.

References:

- 1. J. Chen, J. Li, R. Qi, H. Ye and C. Chen, *Appl Biochem Biotechnol*, 2010, 160, 486.
- 2. R. Xu, G. Liu, X. Dong, Wanqin and Jin, *Desalination*, 2010, 258, 106.
- 3. L. Lin, Y. Zhang and H. Li, J Colloid Interface Sci, 2010, 350, 355.
- W. Liu, B. Li, R. Cao, Z. Jiang, S. Yu, G. Liu and H. Wu, *Journal of Membrane Science*, 2011, 378, 382.
- 5. R. Cao, X. Zhang, H. Wu, J. Wang, X. Liu and Z. Jiang, J Hazard Mater, 2011, 187, 324.
- 6. F. Lu, Y. Kong, H. Lv and J. Yang, *Petroleum Science and Technology*, 2012, **30**, 1232.
- 7. Z. Yang, W. Zhang, J. Li and J. Chen, *Separation and Purification Technology*, 2012, 93, 15.
- 8. S. Sha, Y. Kong and J. Yang, *Journal of Membrane Science*, 2012, 415-416, 835.
- B. Li, W. Liu, H. Wu, S. Yu, R. Cao and Z. Jiang, *Journal of Membrane Science*, 2012, 415-416, 278.
- W. Liu, Y. Li, X. Meng, G. Liu, S. Hu, F. Pan, H. Wu, Z. Jiang, B. Wang, Z. Li and X. Cao, Journal of Materials Chemistry A, 2013, 1, 3713.
- Z.-J. Yang, Z.-Q. Wang, J. Li and J.-X. Chen, Separation and Purification Technology, 2013, 109, 48.
- 12. Y. Xia, G. L. Han, Q. G. Zhang, Y. Gong, I. Broadwell and Q. L. Liu, *Journal of Applied Polymer Science*, 2013, **130**, 3718.
- 13. K. Liu, C.-J. Fang, Z.-Q. Li and M. Young, Journal of Membrane Science, 2014, 451, 24.
- 14. R. Konietzny, T. Koschine, K. Rätzke and C. Staudt, *Separation and Purification Technology*, 2014, **123**, 175.
- 15. Z. Yang, W. Zhang, T. Wang and J. Li, Journal of Membrane Science, 2014, 454, 463.

2. Long-term operation stability of the membrane

The long-term operation stability is a vital index to confirm the potentia of the membranes for practical application. The PDMS control and PDMS-DAAg/5 membrane were used to perform the long-term operation test for a feed of 500 ppmw sulfur in *n*-octane at around 30 °C with a flow rate of 40 L/h. As shown in **Figure S1**, the active layer of PDMS control membrane was damaged after 144 h. The enrichment factor was approximate 1 at 144 h, which suggested thiophene and *n*-octane permeated through the membrane without significant difference. At around 168 h, part of the active layer peeled from the PSF substrate, so no data obtained afterwards. While the permeation flux and enrichment factor of PDMS-DAAg/5 membrane did not obviously decrease during the entire test for more than 190 h. Therefore, the stability of the PDMS-DAAg/5 membranes was favorable for pervaporation desulfurization.

Figure S1. Long-term operation test of (a) PDMS control membrane and (b) PDMS-DAAg/5 membranes.