Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2014

Electronic Supplementary Information

Zeolite Encapsulated Ni(II) and Cu(II) Complexes with Tetradentate N2O2 Schiff Base Ligand: Catalytic Activity Towards Oxidation of Benzhydrol and Degradation of Rhodamine-B

G. Ramanjaneya Reddy,^a S. Balasubramanian,^a K. Chennakesavulu^b*
^aDepartment of Inorganic Chemistry, School of Chemical Sciences, University of Madras, Guindy Campus, Chennai-600 025, India.
^bDepartment of Chemistry and International Research Centre , Sathyabama University, Jeppiaar Nagar, Chennai - 600 119, India..
*Corresponding author: chennanml@yahoo.com, gonturamunom@gmail.com. Tel.: +91 9994228166, 044 22202794

Table of contents

Figure		Page
		no
S1-2	¹ H and ¹³ C-NMR spectra of H ₂ L	3
S3-5	ESI-MS analytical data of H ₂ L, Ni(II)L.2ClO ₄ & Cu(II)L.2ClO ₄	4-5
S6-12	FTIR spectra of the SAL, H ₂ L, Ni(II)L.2ClO ₄ , Cu(II)L.2ClO ₄ , NaY,	
	Ni(II)L-Y and Cu(II)L-Y	
S13(a-d)	XPS patterns (survey image) of the (a) Ni(II)L.2ClO ₄ (b) Ni(II)L-Y	09
	(c) Cu(II)L.2ClO ₄ and (d) Cu(II)L-Y	
S14(a-d)	$M(II)(2P_{3/2})$ patterns of the (a) Ni(II)L.2ClO ₄ (b) Ni(II)L-Y (c)	09
	$Cu(II)L.2CIO_4$ and (d) $Cu(II)L-Y$	
S15(a-e)	Deconvoluted XPS of the N_{1s} region for H_2L , Ni(II)L.2CLO ₄ ,	10
	$Cu(II)L.2CLO_4$, Ni(II)L-Y and Cu(II)L-Y.	
S16(a-e)	Deconvoluted XPS of the O_{1s} region for H_2L , Ni(II)L.2CLO ₄ ,	11
	Cu(II)L.2CLO ₄ , Ni(II)L-Y and Cu(II)L-Y.	
S17(a-c)	N ₂ isotherms of a) NaY, (b) Ni(II)L-Y and (c) Cu(II)L-Y(filled loops are	12
	absorption and unfilled loops are desorption.	
S18	SEM-EDAX of the Ni(II)L-Y	13
S19	SEM-EDAX of the Cu(II)L-Y	13
S20	Image mapping studies of the Ni(II)L-Y	14

S21	Image mapping studies of the Cu(II)L-Y	15		
S22	TEM-EDAX of the Ni(II)L-Y			
S23	TEM-EDAX of the Cu(II)L-Y			
S24	Average particle size of the (a) NaY, (b) Ni(II)L-Y and (c) Cu(II)L-Y)			
825	The absorbance changes of the (a) $Ni(II)L.2CIO_4$ and (b) $Cu(II)L.2CIO_4$ in presence of hydrogen peroxide at 0 °C.			
S26	The absorption plots for benzhydrol oxidation (a) NaY, (b) $Ni(II)L.2CIO_4$, (c) $Cu(II)L.2CIO_4$, (d) $Ni(II)L-Y$ and (e) $Cu(II)L-Y$.	18		
S27	The absorption plots showing the photo degradation of RhB in the presence of (a) NaY, (b) Ni(II)L-Y, (c) Cu(II)L-Y, (d)Ni(II)L.2ClO ₄ and (e)Cu(II)L.2ClO4 under UV irradiation	19		
S28	The absorption plots showing the photo degradation of RhB in the presence of (f) NaY, (g) Ni(II)L-Y, (h) Cu(II)L-Y, (i) Ni(II)L.2ClO ₄ and (j) Cu(II)L.2ClO ₄ with H_2O_2 under Visible light irradiation	20		
S29	LC-MS spectra of the benzhydrol oxidation products encapsulated complexes	21		
S30	XRD:BH oxidation (a) Ni(II)L-Y and (b) Cu(II)L-Y(RECOVERED)	21		
S31	XRD: RhB oxidation (a) Ni(II)L-Y and (b) Cu(II)L-Y(RECOVERED)	22		
S32	DRS:BH oxidation (a)Ni(II)L-Y and (b) Cu(II)L-Y (RECOVERED)	22		
\$33	DRS:RhB oxidation H ₂ O ₂ (a)Ni(II)L-Y and (b) Cu(II)L- Y(RECOVERED)	23		
S34	^I HNMR spectral data of SAL	24		
S35	¹³ C NMR spectral data of SAL	25		
S36	Proposed mechanism for the RhB degradation	26		
	Table A & B: percentage of Ni(II), Cu(II), Si and Al	27		

Figure .S2: ¹³C-NMR spectra of H₂L.

Figure S3:ESI-mass spectra of H₂L

Figure S4:ESI-mass spectra of Ni(II)L.2ClO₄

Figure S5:ESI-mass spectra of Cu(II)L.2ClO₄

Figure S6: FTIR spectra of the SAL

Figure S7:FTIR spectra of the H_2L

Figure S8: FTIR spectra of the Ni(II)L.2CLO₄

Figure S9: FTIR spectra of Cu(II)L.2ClO₄

Figure S10: FTIR spectra of the Na-Y

Figure S11: FTIR spectra of the Ni(II)L-Y

Figure S12: FTIR spectra of the Cu(II)L-Y

Figure S13:(a-d): XPS patterns (survey image) of the (a) $Ni(II)L.2CIO_4$ (b) Ni(II)L-Y (c) $Cu(II)L.2CIO_4$ and (d) Cu(II)L-Y

Figure.S14(a-d): $M(II)(2P_{3/2})$ patterns of the (a) Ni(II)L.2ClO₄ (b) Ni(II)L-Y (c) Cu(II)L.2ClO₄ and (d) Cu(II)L-Y

Figure.S15(a-e):Deconvoluted XPS of the N_{1s} region for H_2L , $Ni(II)L.2CLO_{4,}$ Cu(II)L.2CLO₄, Ni(II)L-Y and Cu(II)L-Y.

Figure:S16(a-e) Deconvoluted XPS of the O_{1s} region for H₂L, Ni(II)L.2CLO₄, Cu(II)L.2CLO₄, Ni(II)L-Y and Cu(II)L-Y.

Figure: S17(a-c) N₂ isotherms of a) NaY, (b) Ni(II)L-Y and (c) Cu(II)L-Y(filled loops are absorption and unfilled loops are desorption

Figure 18: SEM-EDAX of the Ni(II)L-Y

EDAX of the Cu(II)L-Y

Image mapping studies of

Si Ka1 Cu Ka1 Figure S21: Image mapping studies of the Cu(II)L-Y

Figure S22: TEM-EDAX of the Ni(II)L-Y

Figure S23: TEM-EDAX of the Cu(II)L-Y

Figure S24 (a-c): The average particle size obtained from from the SEM micrograph analysis for a) NaY, b) Ni(II)L-Y and c) Cu (II)L-Y.

Figure S25:The absorption plots for benzhydrol oxidation (a) NaY, (b) Ni(II)L.2ClO₄, (c) Cu(II)L.2ClO₄, (d) Ni(II)L-Y and (e)Cu(II)L-Y.

Figure S26: The absorption plots for benzhydrol oxidation (a) NaY, (b) Ni(II)L.2ClO₄, (c) Cu(II)L.2ClO₄, (d) Ni(II)L-Y and (e)Cu(II)L-Y.

Figure 27:The absorption plots showing the photo degradation of RhB in the presence of (a) NaY, (b) Ni(II)L-Y, (c) Cu(II)L-Y, (d)Ni(II)L.2ClO₄ and (e)Cu(II)L.2ClO₄ under UV irradiation.

Figure 29:The absorption plots showing the photo degradation of RhB in the presence of (f) NaY, (g) Ni(II)L-Y, (h) Cu(II)L-Y, (i)Ni(II)L.2ClO₄ and (j)Cu(II)L.2ClO₄ under visible/H₂O₂ irradiation.

Figure S29: LC-MS spectra of the benzhydrol oxidation products encapsulated complexes

Figure S30:After reaction the recovered catalyst (a) Ni(II)L-Y and (b) Cu(II)L-Y in BH oxidation

Figure S31: After reaction the recovered catalyst (a) Ni(II)L-Y and (b) Cu(II)L-Y in RhB degradation.

Figure S32 : Rh B degradation (a)Ni(II)L-Y and (b) Cu(II)L-Y

Figure S33: RhB oxidation H_2O_2 (a)Ni(II)L-Y and (b) Cu(II)L-Y

Figure S35: ¹ HNMR spectral data of SAL

Figure S36: ¹³ CNMR spectral data of SAL

$$M(II)L-Y \qquad \xrightarrow{hv} (e^- + h^+)NaYL + M(II) \qquad (1)$$

$$H_2O_{(ads)} + h^+ \longrightarrow OH^+ + H^+$$
(2)

$$h^+ + OH^- \rightarrow OH^-$$
 (3)

$$NaYL(e^{-})+M(II) \longrightarrow NaYLM(e^{-})$$
 (4)

$$NaYLM(e^{-}) + O2 \longrightarrow NaYL-M(II) + O_2^{-}$$
(5)

$$RhB \longrightarrow RhB*/NaYLM(II)$$

$$OH^{\bullet}_{O_{2}} - \} + RhB*/NaYLM(II) \longrightarrow N-dethylated intermediates$$

$$(6)$$

$$CO_2$$
 + H₂O + very less toxic molecules & salts (7)

Figure S38: Proposed mechanism for the RhB degradation

Table A:

Compound	Cu(%)	Ni(%)	Si/Al	Na(%)	Si(%)	Al(%)
NaY	-	-	2.69	7.81	22.12	8.21
Ni(II)-Y	-	2.56(2.94)	2.69	5.23	22.24	8.24
Cu(II)-Y	1.92(2.02)	-	2.69	5.02	22.75	8.45
Ni(II)L-Y	-	0.79(0.95)	2.61	6.16	20.48	7.25
Cu(II)L-Y	1.02(1.10)	-	2.58	6.83	22.39	8.68

Table B:

Compound	Colour	%M
NiL (ClO ₄) ₂	Yellow	8.2(8.5)
CuL (ClO ₄) ₂	Olive green	10.3(10.42)
Ni(II)-Y	Pale green	2.5
Cu(II)-Y	Pale blue	1.9
Ni(II)L-Y	Pale yellow	0.78
Cu(II)L-Y	pale green	1.02
Ni(II)L- Y(Recovered)	Pale yellow	0.75
Cu(II)L- Y(Rcovered)	pale green	0.93