Supplementary Information for

Core-Shell Si_{1-x}Ge_x Nanowires with Controlled Structural Defects for Phonon Scattering Enhancement

Jong Woon Lee,^{a,g} Junho Lee,^b Su-in Yi,^c Young Min Seo,^{f,g} Byoung Lyong Choi,^d Choongho Yu,^c Cheol-Woong Yang,^f Sungwoo Hwang,^{d,g} Sungjin Kim,^e Dongmok Whanga,^{f,g*} and Eun Kyung Lee^{e*}

- ^a SKKU Advanced Institute of Nanotechnology, Sungkyunkwan University, Suwon, 440-746, Korea.
- ^b Analytical Engineering Group, Samsung Advanced Institute of Technology, Samsung Electronics, Yongin, Kyunggi-do 446-712, Korea.
- ^c Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843 USA.
- ^d Nano Electronics Laboratory, Samsung Advanced Institute of Technology, Samsung Electronics, Giheung-gu, Yongin-si, Gyeonggi-do, 446-712, Korea.
- ^e Computer Aided Group, Samsung Advanced Institute of Technology, Samsung Electronics, Yongin, Kyunggi-do, 446-712, Korea.
- ^f School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, 440-746, Korea.
- ^g Research Center for Time-Domain Nano-Functional Devices, Samsung Advanced Institute of Technology, Giheung, Yong-In, Gyeonggi, 446-712, Korea.

2-point I-V curve data

Top diameter (nm)	Bottom diameter (nm)	Average diameter (nm)	Channel length (µm)
77	333	250	4.2
225	381	303	3.7
350	476	413	4.4
473	613	543	3.6
574	668	621	3
575	825	700	3.6

Table S1. The top, bottom and average diameters of the tapered $Si_{1-x}Ge_x$ alloy nanowires, which are used to calculate the electrical resistivity via 2-point measurement

Figure S1. I-V curves of tapered $Si_{1-x}Ge_x$ alloy nanowires. The contact between nanowire and metal electrodes shows ohmic behavior.

4-point measurement of electrical conductivity

Based on 4-point method, we measured the resistivity of SiGe alloy nanowire (d = ~80 nm) which has similar structure and composition with SiGe alloy nanowire mentioned in manuscript.^{S1} We confirmed that the resistivity is ~35 m Ω ·cm which is very similar to the values obtained using 2-point measurement. Considering that contact problem becomes serious when diameter of nanowire is small^{S2} and tapered nanowires show ohmic behavior, we infer that resistivity error from contact resistance is not significant.

Figure S2. (a) A SEM image of the 4-point measurement device. (b) Applied current vs. voltage difference between electrode 2 and 3.

Thermal properties measurement of tapered Si_{1-x}Ge_x alloy nanowires

The as-grown nanowires were loaded on micro-fabricated devices by using a solution dropdry method for measuring the thermal properties.^{S3-S5} Before the loading, nanowires were dipped into BHF (5:1) to remove the oxide layer and cleaned by deionized water. This device has two adjacent membranes suspended by silicon nitride beams (inset of Fig 3(b)). Each membrane has a platinum resistance thermometer coil, which serves as a heater and a temperature sensor. Underlying Si substrate was etched by tetramethylammonium hydroxide (TMAH) solution to prevent a heat transfer through the silicon substrate. Thermal contact resistance was reduced by depositing Pt layers by using a focus ion beam (FIB) system at the junctions between nanowires and membranes, and annealing samples at 600 °C in high vacuum (< 10^{-6} Torr).

Fig. S3. A schematic of the micro-fabricated MEMS device for measuring nanowire thermal conducvitiy. (a) SiN_x deposition on Si substrate, (b) Patterining the heating and sensing membrane, (c) Photo lithography, (d) SiN_x and Si substrate etching, (e) Pt deposition using a FIB

Supporting References

- S1. S. E. Mohney, Y. Wang, M. A. Cabassi, K. K. Lew, S. Dey, J. M. Redwing and T. S. Mayer, *Solid-State Electron.*, 2005, 49, 227-232.
- S2. A. Chaudhry, V. Ramamurthi, E. Fong and M. S. Islam, Nano Lett., 2007, 7, 1536-1541.
- S3. C. T. Bui, R. Xie, M. Zheng, Q. Zhang, C. H. Sow. B. Li, J. Thong, Small, 2012, 8, 621-626
- S4. J. Roh, K. Hippalgaonkar, J. H. Ham, R. Chen, M. Z. Li, P. Ercius, A. Majumdar, W. Kim and W. Lee, ACS Nano, 2011, 5, 3954-3960
- S5. V. Singh, T. L. Bougher, A. Weathers, Y. Cai, K. Bi, M. Pettes, S. McMenamin, W. Lv, D. Resler, T. R. Gattuso, D. Altman, K. H. Sandhage, L. Shi, A. Henry and B. A. Cola, *Nat.Nanotechnol.*, 2014, 9, 384-390