Reducibility of Co at the La_{0.8}Sr_{0.2}CoO₃/(La_{0.5}Sr_{0.5})₂CoO₄ hetero-

interface at elevated temperatures

Nikolai Tsvetkov, Yan Chen, and Bilge Yildiz*

Laboratory for Electrochemical Interfaces, Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States *E-mail: byildiz@mit.edu

Figure S1. Typical O 1s, Sr 3d, La 3d and Co 2p XPS core-level spectra obtained from different LSC₁₁₃ and LSC₂₁₄ layers within the multilayer (ML) structure at room temperature. At sputtering cycles c12 and c22 the high Co/(La+Sr) ratio comes from LSC₁₁₃ layers in ML. At sputtering cycles c18 and c26 the low Co/(La+Sr) ratio comes from LSC214 layers in ML. Co 2p spectra are presented for different sputtering cycles, denoted as c8-13 (left) and c12-17 (right) in the legends, showing the gradual change of the peak shape going from LSC₂₁₄ to LSC₁₁₃, and from LSC₁₁₃ to LSC₂₁₄, respectively.

In addition to reduction of Co, sputtering with Ar^+ ions could lead to formation of other chemical artefacts. This process is usually accompanied by the shift of binding energy of cation core-levels and broadening of the peaks as the sputtering progresses into the material. However we did not find any such effects of sputtering. The La or Sr peaks remain unchanged during the sputtering; only peak intensity variations related with chemical composition changes were observed (Fig. S1). Within LSC_{113} and LSC_{214} phases all the element photoelectron emission peaks keep the same core-level binding energy position, emission intensity and shape. Moreover the binding energies of all the peaks are unchanged across the whole ML cross-section. A small shift of around 0.1 eV is detected for La core-level peak within LSC_{113} and LSC_{214} layers, and this shift can be related to the different coordination number of A-site cation in the perovskite phase and the rocksalt layer in the Ruddlesden-Popper phase.

Figure S2. Evolution of Co 2p photoelectron spectra during the sputtering of $LSC_{113/214}$ multilayer structure at room temperature. As it can be seen the Co 2p peaks for different LSC_{214} layers (scan 8 and scan 18) have very similar shape. The same situation takes place in case of LSC_{113} layers.

Figure S3. Evolution of the valence band spectra across the LSC_{113/214} interface within the multilayer structure recorded at room

temperature.

Figure S4. O/(La+Sr+Co) content for single phase LSC₁₁₃ and LSC₂₁₄ sputtered at 250 °C. Dashed and dotted lines indicate the stoichiometric O/(La+Sr+Co) ratio for LSC₁₁₃ and LSC₂₁₄, respectively.

Figure S5. Valence band spectra of single phase LSC₁₁₃ and LSC₂₁₄ films recorded at 250 °C by XPS.