Electronic Supplementary Information

MoO₂ Nanobelts@Nitrogen Self-doped MoS₂ Nanosheets as Electrocatalyst

for the Enhanced Hydrogen Evolution Reaction

Weijia Zhou^a*, Dongman Hou^b, Yuanhua Sang^c, Shuhua Yao^d, Jian Zhou^d, Guoqiang Li^b, Hong Liu^c, Shaowei Chen^{a,e}*

^a New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China ^b School of Materials Science and Engineering, South China University of Technology, Wushan Road, Tianhe District, Guangzhou, 510006, China

^c State Key Laboratory of Crystal Materials, Center of Bio & Micro/Nano Functional

Materials, Shandong University, 27 Shandanan Road, Jinan 250100, China

^d National Laboratory of Solid State Microstructures and Department of Materials Science and Engineering, Nanjing University, Nanjing 210093, China

^e Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, California 95064, United States

* Corresponding author. E-mails: eszhouwj@scut.edu.cn (W. J. Zhou), shaowei@ucsc.edu (S. W. Chen)

Samples	Onset overpotential (mV)	Tafel Slope (mV/decade)	literatures
(1) MoS_2 /reduced graphene	-100	41	8b
2 MoS ₂		94	
(1) defect-rich MoS_2	-120	50	21
$\textcircled{2}$ defect-free MoS_2	-180	90	
(1) $MoO_2@N-doped MoS_2$	-156	47.5	Our experiment
2 MoS ₂	-261	77.5	

Table S1 Comparison of the HER performance among different literatures

Figure S1. Reversible hydrogen electrode (RHE) was tested in our experiment.

Figure S2. XRD result of different samples obtained different process: (a) MoO_3 nanobelts, (b) $MoO_2@Mo_2N$ nanobelts and (c) MoO_2 nanobelts@nitrogen-doped MoS_2 nanosheets.

Figure S3. Raman spectra of $MoO_2@Mo_2N$ nanobelts and MoO_2 nanobelts@nitrogen-doped MoS_2 nanosheets.

Figure S4. Reverse scans of MoO₂@N-doped MoS₂ electrode.

Figure S5. Nyquist plots of MoS_2 and $MoO_2@N$ -doped MoS_2 . It can be seen that the MoS_2 sample showed an arc with a large diameter suggesting a large charge–transfer resistance for HER, whereas the $MoO_2@MoS_2$ sample showed almost no arc but a linear profile which suggests significantly reduced charge-transfer resistance and hence the HER was under diffusion control. This indicates that the electronic conductivity of $MoO_2@MoS_2$ is indeed markedly enhanced as compared to MoS_2 alone.

Figure S6. Schematic representation of N-doped MoS_2 nanosheets. Blue for Mo atoms, yellow for S atoms, and gray for N atoms.

Figure S7. HRTEM image N-doping MoS₂ nanosheets.

Figure S8. DOS of N-doped MoS_2 monolayer. The positive and negative values indicate the spin up and down DOS respectively. The Fermi energy is set to 0.