Electronic Supplementary Information

Low-cost and high energy density asymmetric supercapacitors based on polyaniline nanotubes and MoO₃ nanobelts

Hui Peng,^a Guofu Ma,*^a Jingjing Mu,^a Kanjun Sun,^b Ziqiang Lei*^a

^aKey Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key

Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China

^bCollege of Chemistry and Environmental Science, Lanzhou City University, Lanzhou 730070, China *Corresponding authors. E-mail: magf@nwnu.edu.cn; Leizq@nwnu.edu.cn

Experimental details

Materials: Aniline monomer (AN, Shanghai Chemical Works, China) was distilled under reduced pressure. D-tartaric acid (D-TA, Shanghai Chemical Works, China), ammonium persulfate (APS, Tianjin Damao Chemical Co., China) and sodium molybdate (Na₂MoO₄·2H₂O, Tianjing Chemical Co., China), solutions were prepared using deionized water. All other chemical reagents were in analytical grade.

Synthesis of PANI nanotubes: The PANI nanotubes were fabricated similar to our previous reported literature.^[S1] In a typical process, aniline monomer (2 mmol) and D-tartaric acid (1 mmol) were dissolved in 10 mL of deionized water with magnetic stirring for 20 min at room temperature. After that, the resulting solution was cooled to 0-5 °C in an ice bath and an aqueous solution of ammonium persulfate (2 mmol in 5 mL of deionized water) cooled in advance was added drop-by-drop into the above solution. The reaction was carried out with magnetic stirring below 5 °C for 10 h. The resulting precipitate was washed several times with deionized water and ethanol, respectively. Finally, the product was dried at 60 °C for 12 h to obtain a dark green powder.

Synthesis of MoO₃ nanobelts: In a typical process, 4.84 g Na₂MoO₄·2H₂O was dissolved in 10 ml

deionized water. Then 16 ml 4 M $HClO_4$ was added dropwise to the molybdate solution under constant stirring. Finally, this solution was transferred into a 100 ml Teflon-lined stainless steel autoclave and heated at 140 °C for 24 h. After cooled to room temperature naturally, the resulting precipitates of MoO_3 were collected by filtration, washed with distilled water and absolute ethanol for several times to remove the residue of reactants, and then dried in vacuum at 60 °C for 12 h.

Materials Characterization

The morphologies of the as-prepared products were examined with field emission scanning electron microscopy (FE-SEM, JSM-6701F Japan) at an accelerating voltage of 5.0 kV. The structure of the PANI samples was characterized by a transmission electron microscopy (TEM, JEM-2010 Japan). X-ray diffraction (XRD) of samples was performed on a diffractometer (D/Max-2400, Rigaku) advance instrument using Cu K α radiation (k = 1.5418 Å) at 40 kV, 100 mA. The 2 θ range used in the measurements was from 5 to 80°.

Three-electrode fabrication

For conventional three-electrode system, the glassy carbon electrode with a diameter of 5 mm was used as the working electrode. The working electrodes were fabricated similar to the literature.^[S2] Typically, 4 mg of electrode material was ultrasonically dispersed in 0.4 mL of 0.25 wt% Nafion (DuPont, USA). The above suspension of 8 μ L using a pipet gun was dropped onto the glassy carbon electrode and dried at room temperature. The three-electrode system was test in 1 M H₂SO₄ aqueous solutions, platinum electrode serves as the counter electrode, and standard calomel electrode (SCE) as the reference electrode, respectively.

Two-electrode cell fabrication

The capacitive performance of asymmetric supercapacitors was investigated using a twoelectrode testing cell. The working electrode was prepared by mixing the electroactive material with polyvinylidene fluoride (PVDF) and commercial carbon black (8:1:1) in N-methyl-2pyrrolidone (NMP) until homogeneous slurry. The slurry was coated on carbon plate (99.99%, 3 mm) with a working area of 1.0 cm² and the electrodes were dried at 120 °C for 12 h. To construct an ASC, the loading mass ratio of active materials (PANI//MoO₃) was estimated to be 0.89 from the specific capacitance calculated from their galvanostatic charge/discharge curves. The PANI positive electrode and MoO_3 negative electrode were pressed together and separated by a thin polypropylene film. The electrochemical measurements of the ASCs were carried out in a two electrode cell at room temperature in1 M H₂SO₄ electrolyte.

Electrochemical measurements

The electrochemical properties of the samples were investigated by cyclic voltammetry (CV) and galvanostatic charge/discharge measurements in three-electrode cell and two-electrode configuration using a CHI 660D electrochemical workstation. The cycle-life stability was performed using computer controlled cycling equipment (LAND CT2001A, Wuhan China). Electrochemical impedance spectroscopy (EIS) measurements were performed with the Autolab PGSTAT 128N equipped (Eco-chemie, Netherland) with FRA module, the frequency ranging from 10 mHz to 100 kHz and an impedance amplitude of ± 5 mV at open circuit potential.

The gravimetric capacitance from galvanostatic charge/discharge was calculated by using the formula of $C_s=4I\Delta t/(m\Delta V)$ for the two-electrode cells, while, $C_s^*=I\Delta t/(m\Delta V)$ for the three-electrode system, where I is the constant current (A) and m is the mass (g) of electrode material (For the two-electrode cells, m is the total mass of positive and negative electrodes), Δt the discharge time and ΔV the voltage change during the discharge process.

The specific energy density (*E*, Wh kg⁻¹) and power density (*P*, W kg⁻¹) for a supercapacitor cell can be calculated using the following equations: $E=1/2CV^2$ and P=E/t, where *C* is the specific capacitance of supercapacitor cell, *V* is voltage change during the discharge process after IR drop in V-t curve, and *t* is the discharge time.

Figure S1. Nyquist plots of PANI and MoO₃ electrodes for three-electrode system and its expanded high frequency region (inset).

Figure S2. Comparative CV curves of PANI and MoO_3 electrodes performed in three electrode cell in 1 M H_2SO_4 electrolyte at a scan rate of 100 mV s⁻¹

Figure S3. Nyquist plots of PANI//MoO₃ asymmetric supercapacitors for two-electrode system (the inset of modeled equivalent circuit of electrochemical impedance spectroscopy).

ASCs structure	Electrolyte	Operation voltage (V)	Energy density (Wh kg ⁻¹)	Power density (W kg ⁻¹)	Ref.
GrMnO ₂ //GrMoO ₃	Na_2SO_4	2.0	42.6	276	[83]
CNT/MnO ₂ //CNT/In ₂ O ₃	Na ₂ SO ₄	2.0	25.5	50.3K	[S4]
RGO-RuO ₂ //RGO-PANI	КОН	1.4	26.3	150	[85]
MnOOH@RGO//AC	КОН	1.6	41.1	400	[S6]
Ni(OH) ₂ /UGF//a-MEGO	КОН	1.8	13.4	85K	[S7]
CoO@PPy//AC	NaOH	1.8	43.5	87.5	[S8]
Ni(OH) ₂ /graphene//	КОН	1.6	77.8	174.7	[89]
Ni(OH) ₂ /graphene// RuO ₂ /graphene	КОН	1.5	48.0	230	[S10]
MnO ₂ //CNT	Na_2SO_4	2.0	47.4	200	[S11]
MnO ₂ //FeOOH	$\mathrm{Li}_2\mathrm{SO}_4$	1.85	24.0	450	[S12]
NiCo ₂ O ₄ @MnO ₂	NaOH	1.5	35.0	163	[813]
PbO ₂ //AC	$\mathrm{H}_2\mathrm{SO}_4$	1.8	31.6	201	[S14]
Ni-Zn-Co oxide/hydroxide// Porous carbon	Na_2SO_4	1.5	41.6	100	[S15]
PANI//MoO ₃	H_2SO_4	2.0	71.9	254	Present

Table S1. Performances comparison of ASCs with positive and negative electrodes

References

- [S1] J. Mu, G. Ma, H. Peng, J. Li, K. Sun and Z. Lei, J. Power Sources 2013, 242, 797-802.
- [S2] H. Peng, G. Ma, K. Sun, J. Mu, H. Wang and Z. Lei, J. Mater. Chem. A, 2014, 2, 3303-3307.
- [S3] J. Chang, M. Jin, F. Yao, T. H. Kim, V. T. Le, H. Yue, F. Gunes, B. Li, A. Ghosh, S. Xie and Y. H. Lee, *Adv. Funct. Mater.*, 2013, 23, 5074-5083.
- [S4] P. C. Chen, G. Shen, Y. Shi, H. Chen and X. Zhou, ACS Nano 2010, 4, 4403-4411.
- [S5] J. Zhang, J. Jiang, H. Li and X. S. Zhao, Energy Environ. Sci., 2011, 4, 4009-4015.
- [S6] Y. Cao, Y. Xiao, Y. Gong, C. Wang and F. Li, *Electrochim. Acta* 2014, 127, 200-207.
- [S7] J. Ji, L. Zhang, H. Ji, Y. Li, X. Zhao, X. Bai, X. Fan, F. Zhang and R. S. Ruoff, ACS Nano 2013, 7, 6237-6243.
- [S8] C. Zhou, Y. Zhang, Y. Li and J. Liu, Nano lett., 2013, 13, 2078-2085.
- [S9] J. Yan, Z. Fan, W. Sun, G. Ning, T. Wei, Q. Zhang, R. Zhang, L. Zhi and F. Wei, Adv. Funct. Mater., 2012, 22, 2632-2641.
- [S10] H. Wang, Y. Liang, T. Mirfakhrai, Z. Chen, H. S. Casalongue and H. Dai, *Nano Res.*, 2011, 4, 729-736.
- [S11] H. Jiang, C. Li, T. Sun and J. Ma, Nanoscale 2012, 4, 807-812.
- [S12] W. Jin, G. Cao and J. Sun, J. Power Sources, 2008, 175, 686-691.
- [S13] K. Xu, W. Li, Q. Liu, B. Li, X. Liu, L. An, Z. Chen, R. Zou and J. Hu, J. Mater. Chem. A, 2014, 2, 4795-4802.
- [S14] N. Yu and L. Gao, *Electrochem. Commun.*, 2009, 11, 220-222.
- [S15] H. Wang, Q. Gao and J. Hu, J. Power Sources, 2010, 195, 3017-3024.