A Series of Metal-Organic Frameworks Based on 5-(4-Pyridyl)-Isophthalic Acid: Selective Sorption and Fluorescence Sensing

Xiaofang Zheng,[†],[§] Li Zhou,[†], [§] Yumei Huang,[†] Chenggang Wang,[†] Jingui Duan,[‡] Lili Wen, ^{*,†} Zhengfang Tian[&] and Dongfeng Li^{*,†}

[†]Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College

of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China.

* State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing University of Technology, Nanjing, 210009, P. R. China.

& Hubei Key Laboratory for Processing and Application of Catalytic Materials,

Huanggang Normal University, Huangguang, 438000, P. R. China.

[§]Xiaofang Zheng and Li Zhou contributed equally to this work

		1 ^a		
Ni1–O3	1.980(3)	Ni1–O5	2.085(4)	
Ni1-O6	2.132(3)	Ni1-O4#1	2.058(3)	
Ni1-N1#2	2.066(4)	Ni1-O1#3	1.984(3)	
O1#3 -Ni1-O3	172.75(15)	O4#1-Ni1-O5	176.65(13)	
O6 -Ni1-N1#2	178.17(10)			
2 ^b				
Ni1-O1	2.099(2)	Ni1-O1W	2.141(3)	
Ni1-O4W	2.098(3)	Ni1-O10	2.055(2)	
Ni1-N2	2.067(3)	Ni1-O4#1	1.961(2)	
Ni2-O1W	2.140(2)	Ni2–O5W	2.084(2)	
Ni2-09	1.994(3)	Ni2-013	1.998(3)	
Ni2-O3#1	1.959(3)	Ni2-N3#2	2.090(3)	

Table S1. Selected Bond Distances (Å) and Angles (deg) for 1-4.

Ni3-O2W	2.136(2)	Ni3-015	2.085(2)
Ni3-017	1.981(2)	Ni3-025	2.054(2)
Ni3-O19#1	1.999(2)	Ni3-N5#3	2.094(3)
Ni4-O2W	2.130(2)	Ni4–O6W	2.091(2)
Ni4-016	1.996(2)	Ni4-021	2.021(3)
Ni4-O20#1	2.037(2)	Ni4-N6#4	2.099(3)
Ni5-O3W	2.135(2)	Ni5-O7W	2.237(3)
Ni5-024	2.014(3)	Ni5-O12#5	1.972(3)
Ni5-07#6	2.067(3)	Ni5-N4#4	2.086(3)
Ni6-O3W	2.186(3)	Ni6-023	2.050(3)
Ni6-N7	2.086(3)	Ni6 –O8#6	1.998(2)
Ni6-O5#3	1.995(2)	Ni6-N1#3	2.116(3)
O1W-Ni1-N2	177.05(11)	O4W-Ni1-O10	176.74(10)
O1-Ni1-O4#1	161.27(10)	O9-Ni2 -O13	175.41(10)
O1W-Ni2-N3#2	177.68(11)	O3#1-Ni2-O5W	175.59(10)
O15-Ni3-O25	175.40(10)	O2W-Ni3-N5#3	177.74(11)
O17-Ni3-O19#1	172.72(10)	O2W-Ni4-N6#4	178.19(11)
O6W-Ni4-O20#1	177.82(10)	O16-Ni4 -O21	172.86(10)
O3W-Ni5-N4#4	177.19(11)	O7#6-Ni5-O7W	175.37(10)
O12#5-Ni5-O24	174.30(11)	O3W-Ni6-N1#3	175.48(11)
O23-Ni6-N7	179.43(12)	O5#3-Ni6-O8#6	174.06(11)
		3 ^c	
Co1-N1	2.129(3)	Co1-N5	2.148(3)
Co1-O4#1	2.155(3)	Co1-O7#2	2.096(3)
Co1-N10#3	2.194(3)	Co2–O1	2.055(3)
Co2-O5	2.039(3)	Co2–N8	2.121(3)
Co2-N4#4	2.135(3)	Co2-N9#5	2.140(3)
N1-Co1-N5	173.58(12)	O4#1-Co1-N10#3	140.93(10)
O7#2-Co1-N10#3	131.87(10)		
		4 ^d	
Zn1–O1	2.002(4)	Zn1–N1	2.052(7)
Zn1-N2	1.999(6)	Zn1-O1#1	2.002(4)
O1-Zn1-N1	101.72(18)	O1#1 -Zn1-N2	110.89(17)

^{*a*} Symmetry codes for 1: #1 2-*x*, *y*, 1/2-*z*; #2 2-*x*, -*y*, -*z*; #3 1/2+*x*, 1/2+*y*, *z*

^{*b*} Symmetry codes for **2**: #1 -1+*x*, *y*, *z*; #2 -*x*, -*y*, -*z*; #3 1-*x*, -*y*, 1-*z*; #4 -*x*, 1-*y*, 1-*z*; #5 *x*, 1+*y*, 1+*z*; #6 -*x*, -*y*, 1-*z*

^c Symmetry codes for **3**: #1 x, y, 1+z; #2 1+x, y, 1+z; #3 1-x, 1/2+y, 3/2-z; #4 -1+x, y, -2+z; #5 1-x,

1/2+*y*, 1/2-*z* ^{*d*} Symmetry codes for **4**: #1 *x*, *y*, 2-*z*

molecules	kinetic diameter (Å)	Uptake
		$(cm^3 g^{-1})$
water	2.64 - 2.9	125
methanol	3.626 - 4.0	70
ethanol	4.3 - 4.53	42
<i>n</i> -propanol	4.7	27
<i>i</i> -propanol	4.7	18

Table S2. The kinetic diameter of the adsorbents and their maximur	n uptakes for activated 3.
Tuble 52. The killede diameter of the unberofild and their maximum	i uptuites foi uetivuteu e:

(a)

Figure S1. (a) The asymmetric unit of **1**, (b) coordination environment of dimmer unit $[Ni_2(COO)_2(\mu^2-H_2O)]$ (violet), viewed as 8-connected node, (c) 3D framework of **1** along [1 1 0] directions.

Figure S2. (a) The asymmetric unit of **2**, (b) coordination environment of Ni atom with hydrogen atoms omitted for clarity of **2**, (c) coordination environment of dimmer unit $[Ni_2(COO)_2(\mu^2-H_2O)]$ (violet, green and black), viewed as 8-connected node, (d) the topological representation of **2**.

(c)

(d)

(e)

(f)

(g)

Figure S3. (a) The asymmetric unit of **3**, (b) 2D layer constructed from $pbdc^{2-}$ moiety and Co(II) atoms in **3**, (c) and (d) 3D framework of **3** along *b*- and *c*- direction, respectively, (e) coordination environment of Co(II) (blue) and $pbdc^{2-}$ (violet), viewed as 5- and 3- connected nodes, respectively, (f) The hexagonal microporous channels along the *a*-axis, (g) the topological representation of binodal (3,5)-connected 3D single network. purple, $pbdc^{2-}$ ligand; blue, Co.

Figure S4. (a) The asymmetric unit of **4**, (b) 3D single framework of **4** along *c*- direction, (c) coordination environment of Zn(II) (blue) and $pbdc^{2-}$ (violet), viewed as 4- and 3- connected nodes, respectively, (d) the topological representation of binodal (3,4)-connected 3D single network. purple, $pbdc^{2-}$ ligand; blue, Zn1.

Figure S5. PXRD profiles for complexes 1 (a), 2 (b), 3 (c) and 4 (d). Simulated spectrum was calculated from the single crystal data.

Figure S6. TG curves of complexes 1-4.

Figure S7. (a) Sorption isotherms for CO_2 , CH_4 , and N_2 at 298 K of desolvated **3** (adsorption and desorption branches are shown with filled and empty shape, respectively). (b) and (c) Evaluation of the initial slope in the Henry region of the sorption isotherms of CO_2 (square), CH_4 (circle), and N_2 (triangle) at 273 and 298 K, respectively. The ratios of the initial slopes allowed an estimation of the sorption selectivity.

Figure S8. The isosteric heats of H_2 adsorption (Q_{st}) for desolvated **3**.

Figure S9. Water and alcohol vapor adsorption–desorption isotherms of the desolvated **3**: water, methanol, ethanol and *i*-propanol at 298 K, where filled and open shape represent adsorption and desorption, respectively.

Figure S10. (a) The solid-state fluorescent spectra of **4** and free ligands at room temperature. (b) The emission decay lifetime of compound **4**.

Figure S11. The PL spectra of 4 introduced to various pure solvent when excited at 290 nm.

Figure S12. The PL spectra of **4** in the presence of various volumes acetone in DMF (excited at 290 nm).

Figure S13. The PL intensities of **4** toward relevant pesticides with concentration of $1*10^{-3}$ M in DMF when excited at 290 nm.

Figure S14. The PL intensity of 4 as a function of parathion-methyl at different concentrations in

Figure S15. The PL intensity of **4** as a function of parathion–methyl at different concentrations in DMF.

Figure S16. PXRD profiles for complexes 4 in different solvents.

DMF.