Highly-sensitive SnO₂ Nanofiber Chemiresistors with Low Optimal

Operating Temperature: Synergistic Effect of Cu²⁺/Au Co-doping

Zhenyu Li,^{a,b} Xungai Wang^a, Tong Lin^{a,*}

 ^a Institute for Frontier materials, Deakin University, Geelong, Victoria 3216, Australia
^b Alan G. MacDiarmid Institute, Jilin University, Changchun 130012, P. R. China E-mail: <u>tong.lin@deakin.edu.au</u>

Electronic Supplementary Information

Fig. S1 SEM images of pure SnO_2 nanofibers with low and high magnifications.

CASNFs (1Cu/5Au/SnO₂)

CASNFs (3Cu/5Au/SnO₂)

Fig. S2 SEM images of CASNFs with different Cu/Au/Sn ratios $(3Cu/5Au/SnO_2 \text{ is referred to as } Cu/Au/Sn ratio = 3:5:100 \text{ atom/atom in the nanofibers}).$

Fig. S3 TEM images of pure SnO₂ nanofiber and CASNFs with different Cu/Sn ratios (the Au/Sn ratio in all the sample was fixed at 5:100 atom/atom).

Fig. S4 (a) TEM image of Cu^{2+}/Au co-doped SnO₂ nanofiber (1Cu/5Au/SnO₂), and (b)~(e) TEM EDS maps of the same area. The abundant navy/red, purple, yellow, and grass green dots indicate the locations of (b) Au, (c) O, (d) Cu, and (e) Sn, respectively. (Cu is found to distribute out of the nanofibers, due to the use of a Cu TEM grid.)

Fig. S5 High-resolution XRD to show the (101) peak of Cu-doped SnO_2 nanofibers (step length: 0.005/step).

Fig. S6 XRD patterns of Cu^{2+} -doped and Cu^{2+}/Au co-doped SnO₂ nanofibers.

MOCs	C_2H_2	Operating Temperature	R_a/R_g	t_1/t_2	Ref
	(ppm)	(°C)	-	(s/s)	
Our experiment	100	160	~10.8	5/13	
$(1Cu/5Au/SnO_2)$					
Pd-doped SnO ₂	100	350	~3.6	6/11	S 1
Ni-doped ZnO	100	250	~2.7	7/10	S2
Pt/ZnO	1,000	300	~45	6/65	S 3
Sm ₂ O ₃ -doped SnO ₂	100	180	~8.3	8/14	S4
ZnFe ₂ O ₄	1000	350	~12		S5
CuFe ₂ O ₄	1000	250	~15	-	S5
CdFe ₂ O ₄	1000	250	~31		S5
MgFe ₂ O ₄	1000	250	~22		S5
Flame-spray-made SnO_2 nanoparticles	10,000	300	~6.3	34/14	S6
Nanoparticle-decorated ZnO microdisk	200	420	~52	15/19	S7
γ -Fe ₂ O ₃ powder	1,000	380	~15	35/41	S 8

Table S1 Comparison between different MOCs against C_2H_2*

*To give convictive comparative data, we have made a suitable transformation to these data by defining S=Ra/Rg.

1Cu/SnO₂ nanofibers

2Cu/SnO₂ nanofibers

3Cu/SnO₂ nanofibers

5Au/SnO₂ nanofibers

Fig. S7 SEM images of Cu^{2+} - or Au-doped SnO₂ nanofibers.

SnO₂ nanofibers 1at% Cu doped

SnO₂ nanofibers 2at% Cu doped

 SnO_2 nanofibers 3at% Cu doped

SnO₂ nanofibers 5at% Au doped

Fig. S8 TEM images of Cu^{2+} - or Au-doped SnO₂ nanofibers.

Fig. S9 XRD results of Cu^{2+} - or Au-doped SnO₂ nanofibers.

Fig. S10 Nitrogen adsorption - desorption isotherms and pore size distribution of nanofiber samples.

Fig. S11 Effect of Cu²⁺-doping and Cu²⁺/Au co-doping on the SnO₂ grain size of nanofibers (calculated by $D = K\lambda/\beta \cos\theta$).

Fig. S12 Effect of Cu²⁺-doping on Au (111) phase.

References

- S1. W. G. Chen, Q. Zhou, T. Y. Gao, X. P. Su and F. Wan, Journal of Nanomaterials, 2013.
- S2. X. Wang, M. Zhao, F. Liu, J. Jia, X. Li and L. Cao, *Ceramics International*, 2013, **39**, 2883-2887.
- S3. N. Tamaekong, C. Liewhiran, A. Wisitsoraat and S. Phanichphant, *Sensors and Actuators B: Chemical*, 2011, **152**, 155-161.
- S4. Q. Qi, T. Zhang, X. Zheng, H. Fan, L. Liu, R. Wang and Y. Zeng, Sensors and Actuators B: Chemical, 2008, 134, 36-42.
- S5. N.-S. Chen, X.-J. Yang, E.-S. Liu and J.-L. Huang, Sensors and Actuators B: Chemical, 2000, 66, 178-180.
- S6. C. Liewhiran, N. Tamaekong, A. Wisitsoraat and S. Phanichphant, *Sensors and Actuators B: Chemical*, 2012, **163**, 51-60.
- S7. L. Zhang, J. Zhao, J. Zheng, L. Li and Z. Zhu, *Sensors and Actuators B: Chemical*, 2011, 158, 144-150.
- S8. Z. Tianshu, L. Hongmei, Z. Huanxing, Z. Ruifang and S. Yusheng, Sensors and Actuators B: Chemical, 1996, 32, 181-184.