Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2014

Electronic Supporting Information

Gold Photosensitized SrTiO₃ for Visible-Light Water Oxidation Induced by Au Interband Transitions

Lequan Liu, Peng Li, Boonchun Adisak, Shuxin Ouyang, Naoto Umezawa, Jinhua Ye * Kodiyath

Rajesh, Toyokazu Tanabe, Gubbala V. Ramesh, Shigenori Ueda, Hideki Abe

Contents:

Material Preparation

- Fig. S1. Schematic illustration of the synthetic procedure of SrTiO₃ and Au/SrTiO₃.
- **Fig. S2**. TG-DTA plots of the SrTiO₃-organic polymer precursor.
- Fig. S3. Spectra of Xe lamp with and without L42 cutoff filter.
- Fig. S4. Spectra of Xe lamp with water filter and various bandpass filters.
- Fig. S5. XRD patterns of SrTiO₃ (a), 0.49% Au/SrTiO₃ (b), 1.1 % Au/SrTiO₃ (c) and 3.0 %.
- Fig. S6. Nitrogen physisorption isotherms of 1.1% Au/SrTiO₃
- Fig. S7. XPS binding energy of Au (a), Ti (b) and Sr (c) of 1.1% Au/SrTiO₃
- Fig.S8. Normalized UV-vis diffusion reflectance absorption spectra of SrTiO₃ and a series of
- Au/SrTiO₃ photocatalysts with different Au loadings. Inset: Tauc plot of SrTiO₃

Material Preparation.

Au NPs and nanopowder preparation or information

Au NPs with diameter of about 3 nm: typically this involves the preparation of a 20 mL aqueous solution containing 2.5×10^{-4} M HAuCl₄ and 2.5×10^{-4} M trisodium citrate. To this solution was added 0.6 mL of ice cold 0.1 M NaBH₄ with stirring. The solution immediately turned orange-red, indicating the formation of gold nanoparticles. The average particle size measured from transmission electron microscopy was about 3 nm.¹

Au nanopowder used in valence band measurement was purchased from Nanostructured & Amorphous Materials Inc (USA). Basic parameters are as follows: particle size: 50 nm; purity: 99.99%, surface area: $3 \text{ m}^2/\text{g}$.

1. N. R. Jana, L. Gearheart and C. J. Murphy, J. Phys. Chem. B, 2001, 105, 4065-4067.

Fig. S1. Schematic illustration of the synthetic procedure of SrTiO₃ and Au/SrTiO₃.

Fig. S2. TG-DTA plots of the SrTiO₃-organic polymer precursor.

Fig. S3. Spectra of Xe lamp with and without L42 cutoff filter.

Fig. S4. Spectra of Xe lamp with water filter and various bandpass filters.

Fig. S5. XRD patterns of SrTiO $_3$ (a), 0.49% Au/SrTiO $_3$ (b), 1.1 % Au/SrTiO $_3$ (c) and 3.0 %

Fig. S6. Nitrogen physisorption isotherms of 1.1% Au/SrTiO₃

Fig. S7. XPS binding energy of (a) Au, (b) Ti and (c) Sr of 1.1% Au/SrTiO₃

Fig. S8. Normalized UV-vis diffusion reflectance absorption spectra of $SrTiO_3$ and a series of Au/SrTiO₃ photocatalysts with different Au loadings. Inset: Tauc plot of $SrTiO_3$