Electronic supplementary information (ESI)

Three dimensional hierarchical pompon-like Co₃O₄ porous spheres

for high-performance lithium-ion batteries

Wenjun Hao, ^a Shimou Chen, ^b Yingjun Cai, ^b Lan Zhang, ^b Zengxi Li^{*a} and Suojiang Zhang^{*b}

^a School of Chemistry and Chemical Engineering, University of Chinese Academy of

Sciences (UCAS), Beijing 100049, PR China

^b Beijing Key Laboratory of Ionic Liquids Clean Process, Key Laboratory of Green Process and Engineering, Institute of Process Engineering (IPE), Chinese Academy of Sciences (CAS), Beijing 100190, PR China

Experimental

1. Preparation of 3D hierarchical Co₃O₄ structures

All of the chemicals were analytical grade and were used without further purification. Three kinds of Co_3O_4 with different morphologies were prepared through a hydrothermal method. In a typical experiment, Cobalt nitrate hexahydrate $(Co(NO_3)_2 \cdot 6H_2O)$ and urea $(CO(NH_2)_2)$ (Molar Ratio = 4:1) were dissolved in deionized water (40 mL) under vigorous stirring for 1 h. The mixed solution was transferred into a 50 mL polytetrafluoroethylene (PTFE) Teflon-lined autoclave, sealed, and maintained at 160 °C for 6-12 h in an electric oven. After cooling to room temperature, the precipitates were centrifuged, washed with distilled water and ethanol for more than 3 times. Finally, the red powders of the precursor were calcined in a muffle furnace at 300 °C for 2 h in air at a ramping rate of 1 °C $\cdot min^{-1}$, and then cooled down to room temperature in air gradually. The as-obtained products show 3D pompon-like sphere structures. To prepare the Co_3O_4 nanowires, the molar ratio of Cobalt nitrate hexahydrate to urea was 1:5. For the Co_3O_4 nanowires, the molar ratio was 6:5, other than that, the experimental conditions of the two morphologies are similar with that of pompon-like sphere.

2. Characterization

The X-ray diffraction (XRD) patterns were recorded on a Bruker D8 Focus X-ray diffractometer with Ni-filtered Cu-K α radiation ($\lambda = 0.15406$ nm). The scanned 2 θ range was between 10 ° and 80 ° at room temperature. The morphologies and

microstructures of the samples were characterized by scanning electron microscope (SEM) at 10.0 kV on a JEOL JSM-7001F microscope. Transmission electron microscopy (TEM) observations and selected area electron diffraction (SAED) measurements were performed by using a JEOL JEM-2100 microscope operating at 200 kV. The specific surface area and pore volume of the samples were performed by the N₂ adsorption and desorption isotherm method at -196 $^{\circ}$ C on a Quadrasorb SI-MP analyzer, respectively. Prior to measurement, all of the samples were degassed in a vacuum at 4 mmHg and 150 $^{\circ}$ C for 7 hours.

3. Electrochemical measurements

The electrochemical experiments were performed using CR2032 type coin cells assembled in a dry argon-filled glovebox. The working electrode was fabricated by mixing the Co₃O₄, acetylene black and polyvinylidene fluoride (PVDF) with a weight ratio of 70:20:10, followed by pasting the mixture onto copper foil and dried at 80 $^{\circ}$ C in vacuum oven for 12 h. Lithium foil was used as the counter electrode and they were separated by a Celgard 2400 membrane. The electrolyte used in this experiment was LiPF₆ (1M) /EC+DEC+DMC (1:1:1, weight). The galvanostatic charge/discharge tests were carried out on a LAND battery testing system in the voltage range of 0.01-3.2 V with different current density at room temperature. Electrochemical impedance spectroscopy (EIS) measurements tests were carried on out a ACM Gill-AC-4 electrochemical station.

Fig. S1 Specific SEM image of 3D pompon-like Co₃O₄

Fig. S2 XRD pattern of other two different kinds of Co₃O₄ morphologies

Fig. S3 SEM image of 3D pompon-like Co_3O_4 after calcination

Fig. S4 Impedance spectra of three kinds of Co₃O₄ before cycling

Fig. S5 Impedance spectra of three kinds of Co_3O_4 at the 5th cycle.