Supporting Information

Identifying Pseudocapacitance of Fe₂O₃ in Ionic Liquid and its Application in Asymmetric Supercapacitors

Shixiong Sun,^{a,c} Junwei Lang, ^a Rutao Wang, ^a Lingbin Kong,^{c,*} Xiaocheng Li ^a and Xingbin Yan^{a,b*}

^a Laboratory of Clean Energy Chemistry and Materials, Lanzhou Institute of Chemical Physics, Chinese of Academy of Sciences, Lanzhou, 730000, P.R. China. E-mail: xbyan@licp.cas.cn

^b State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China

^c Department of Material Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, P.R. China. E-mail: konglb@lut.cn

Figure S1 TEM image of as-prepared Fe₂O₃ particles and the corresponding SAED pattern.

Sample	R1	R2	CPE1T	CPE1P	CPE2T	CPE2P
Fe ₂ O ₃	11.09	23.95	0.004412	0.48957	0.026855	0.72845
Fe ₂ O ₃ @GNS	3.922	14.74	0.027903	0.30084	0.11197	0.81829

Table S1 The fitting data from Nyquist plots of Fe₂O₃ and Fe₂O₃@GNS

Figure S2 SEM images of as-made GNSs (a and b) and $Fe_2O_3@GNS$ (c and d) with different magnifications.

Figure S3 Nitrogen adsorption-desorption isotherms of as-made Fe₂O₃ and Fe₂O₃@GNS.

Figure S4 Electrochemical characteristics of Fe_2O_3 @GNS in EMIMBF₄ electrolyte under the threeelectrode system: (a) CV curves at different scan rates, (b) GCD curves at different current densities.

Figure S5 Structure characteristics of commercial AC (*Xinjiang Tianfu Technology Co., Ltd, China*) and as-made APDC: SEM images of (a) APDC and (b) commercial AC, (c) Nitrogen adsorption-desorption isotherms, and (d) the corresponding pore-size distributions.

Figure S6 Electrochemical characteristics of commercial AC and as-made APDC in EMIMBF₄ electrolyte under the three-electrode system: (a) CV curves at a scan rate of 10 mV·s⁻¹, (b) GCD curves at a current density of 0.5 A·g⁻¹, (c) the specific capacitance as a function of discharge current density, and (d) Nyquist plots.

Figure S7 CV curve of Fe₂O₃@GNS//AC in different cell windows at the scan rate of 50 mV·s⁻¹.