Electronic Supplementary Information

Straightforward synthesis of a triazine-based porous carbon with high gas-uptake capacities

Xin-Ming Hu,^{*a,b*} Qi Chen,^{*a*} Yan-Chao Zhao,^{*a*} Bo W. Laursen,^{*b*} Bao-Hang

 Han^{*a}

 ^a National Center for Nanoscience and Technology, Beijing 100190, China Tel: +86 10 8254 5576. Email: <u>hanbh@nanoctr.cn</u>
 ^b Nano-Science Center and Department of Chemistry, University of

Copenhagen, Universitetsparken 5, DK-2100 København Ø, Denmark

Sample	С	N	F	Н	C/N
Monomer ^a (wt%)	48.02	14.00	37.98	0	3.43
TPC-1 (wt%)	60.54	20.87	0^b	2.23	2.90

Table S1. Elemental analysis of TPC-1.

^a Theoretical value of the monomer; ^b deduced by XPS, EDX and ¹⁹F NMR analysis.

Table S2. Porosity properties of TPC-1.

Material	$\frac{S_{\rm BET}}{({\rm m}^2~{\rm g}^{-1})^a}$	$\frac{S_{\rm micro}}{({\rm m}^2{\rm g}^{-1})^b}$	S _{micro} / S _{BET}	V_{total} $(\text{cm}^3 \text{ g}^{-1})^c$	$V_{ m micro}$ $(m cm^3 g^{-1})^d$	$V_{ m micro}$ / $V_{ m total}$	D_{pore} (nm) ^e
TPC-1	1940	800	0.41	1.23	0.36	0.29	0.63

^{*a*} Specific surface area calculated from the nitrogen adsorption isotherm using the BET method at the relative pressure ranging from 0.05 to 0.2. ^{*b*} Micropore surface area calculated from the nitrogen adsorption isotherm using the *t*-plot method. ^{*c*} Total pore volume at $P/P_0 = 0.97$. ^{*d*} Micropore volume calculated from the nitrogen adsorption isotherm using the *t*-plot method. ^{*e*} Dominant pore size determined by the nonlocal density functional theory (NLDFT) method.

Porous materials		CO ₂ /N ₂ selectivity ^a	References	
	TPC-1	38	This work	
Porous carbon materials	NC-800	21.6	S 1	
	NPC-650	23.4	S2	
	HCM-DAH-1	28^b	S 3	
	PIF6	58.9 ^b	S4	
Porous organic polymers	PCTF-7	22	S 5	
	PI-1	27^{b}	S 6	
	ALP-3	43	S7	
	PECONF-1	109	S 8	
	BILP-2	113	S 9	
	rht-type MOF (1)	34.3	S10	
Porous	cobalt-imidazolate	50	S11	
coodination	framework (2')	39		
polymers	Bio-MOF-11	81	S12	
	CAU-1	101	S13	

Table S3. Summary of CO_2/N_2 adsorption selectivity for various nitrogen-containning adsorbents.

^{*a*} These data are estimated from the ratio of initial slopes of CO_2 and N_2 adsorption isotherms at 273 K unless stated otherwise; ^{*b*} data obtained at 298 K.

Figure S1. EDX spectrum of TPC-1: Zn (around 1.0 keV) or Cl (around 2.6 and 8.6 keV) signal from $ZnCl_2$ is not observed.^{S14}

Figure S2. Solid state CP/MAS ¹⁹F NMR spectrum of TPC-1. Original F signal (around

-147 ppm) is not observed.^{S15}

Figure S3. TGA curve of TPC-1.

Figure S4. XRD pattern of TPC-1.

Figure S5. Cycles of CO₂ adsorption for TPC-1 at 273 K.

Figure S6. Initial slopes from CO_2 (green circle), CH_4 (blue up-triangle), N_2 (pink down-triangle), and H_2 (cyan diamond) adsorption isotherms at 273 K and low pressure region for TPC-1.

References

- S1 J. Wang, I. Senkovska, M. Oschatz, M. R. Lohe, L. Borchardt, A. Heerwig, Q. Liu and S. Kaskel, ACS Appl. Mater. Interfaces, 2013, 5, 3160–3167.
- S2 J. Wang, I. Senkovska, M. Oschatz, M. R. Lohe, L. Borchardt, A. Heerwig, Q. Liu and S. Kaskel, *J. Mater. Chem. A*, 2013, 1, 10951–10961.
- S3 G.-P. Hao, W.-C. Li, D. Qian, G.-H. Wang, W.-P. Zhang, T. Zhang, A.-Q. Wang, F. Schüth, H.-J. Bongard and A.-H. Lu, J. Am. Chem. Soc., 2011, 133, 11378–11388.
- S4 M. Saleh, J. N. Tiwari, K. C. Kemp, M. Yousuf and K. S. Kim, *Environ. Sci. Technol.*, 2013, 47, 5467–5473.
- S5 A. Bhunia, I. Boldog, A. Möller and C. Janiak, J. Mater. Chem. A, 2013, 1, 14990–14999.
- S6 A. Laybourn, R. Dawson, R. Clowes, J. A. Iggo, A. I. Cooper, Y. Z. Khimyak and D. J. Adams, *Polym. Chem.*, 2012, **3**, 533–537.
- S7 P. Arab, M. G. Rabbani, A. K. Sekizkardes, T. Islamoğlu and H. M. El-Kaderi, *Chem. Mater.*, 2014, 26, 1385–1392.
- S8 P. Mohanty, L. D. Kull and K. Landskron, Nat. Commun., 2011, 2, 401.
- S9 M. G. Rabbani and H. M. El-Kaderi, Chem. Mater., 2012, 24, 1511-1517.
- S10 B. Zheng, Z. Yang, J. Bai, Y. Lia and S. Li, Chem. Commun., 2012, 48, 7025–7027.
- S11 S.-S. Chen, M. Chen, S. Takamizawa, P. Wang, G.-C. Lv and W.-Y. Sun, *Chem. Commun.*, 2011, 47, 4902–4904.
- S12 J. An, S. J. Geib and N. L. Rosi, J. Am. Chem. Soc., 2010, 132, 38-39.
- S13 X. Si, C. Jiao, F. Li, J. Zhang, S. Wang, S. Liu, Z. Li, L. Sun, F. Xu, Z. Gabelica and C. Schick, *Energy Environ. Sci.*, 2011, 4, 4522–4527.
- S14 P. Kuhn, A. Thomas and M. Antonietti, Macromolecules, 2009, 42, 319-326.
- S15 D.-P. Liu, Q. Chen, Y.-C. Zhao, L.-M. Zhang, A.-D. Qi and B.-H. Han, ACS Macro Lett., 2013, 2, 522–526.