Electronic Supplementary Information (ESI)

Cobalt-based compounds and composites as electrode materials for high-performance electrochemical capacitors

Kian Keat Lee, Wee Shong Chin, Chorng Haur Sow

List of Tables:

Summary of the detailed experimental conditions (type of current collectors, electrolytes and electrolyte concentrations, potential window, and methods) to study various cobalt-based compounds and composites, and their electrochemical performance (specific capacitance and areal capacitance based on available data of mass loading, cycling life and rate capability).

	Type of electrodes	Page
Table 1.	Cobalt oxide electrodes.	2
Table 2.	Cobalt hydroxide and oxyhydroxide electrodes.	6
Table 3.	Cobalt sulfides.	9
Table 4.	Other cobalt compounds.	10
Table 5.	Cobalt-based LDHs.	11
Table 6.	Cobalt-based binary compounds and heterostructures.	13
Table 7.	Cobalt compounds-carbon nanomaterials composites.	19
Table 8.	Cobalt compounds synthesized on different 3D supports/ current collectors.	23
Table 9	Asymmetric ECs involved cobalt compounds/ composites	23

Note:

CV: cyclic voltammetry; GS: galvanostatic charge-discharge measurement; DH: double hydroxides; LDH: layered double hydroxides

^a Areal capacitance calculated based on mass loading mentioned in the paper; ^b Capacitance retention based on the highest C_m after cycling activation.

Electrolyte C_m C_a Cycle life Rate capability Materials **Current collector** Potential Method $(\mathbf{F}/\mathbf{cm}^2)$ (\mathbf{F}/\mathbf{g}) window (V) (cycling no.) **Chemical precipitation: powdered electrodes** $^{1}Co_{3}O_{4}$ nanorods Ni grid 2 M KOH 0-0.4 127.5 GS Co_3O_4 nanowires (SCE) 102.5 (1 A/g)Co₃O₄ LPF nanostructures 202.5 $^{2}Co_{3}O_{4}$ nanoparticles Ni foam 8 M KOH 0-0.6 320 CV -_ _ (Hg/HgO) (5 mV/s) $^{3}Co_{3}O_{4}$ nanowires (ref) Ni foil 1 M KOH 86.7 % 68 % 0-0.6 336 GS (Hg/HgO) 232 92.8 % 54 % Co_3O_4 nanowires (mw) (1 A/g)(2000 cyc) (GS 16 A/g) ⁴Co₃O₄ microflowers at 6 M KOH -0.2-0.5 CV Ni foil _ 300 °C (SCE) 90.6 % 160 (5 mV/s)400 °C 88 (CV 20 mV/s)500 °C 71 574 $^{5}Co_{3}O_{4}$ nanotubes Ni foam 6 M KOH -0.1-0.4 GS 95 % 84.3 % -(SCE) (0.1 A/g)(1000 cyc) (GS 1 A/g) ⁶Co₃O₄ meso-macroporous ITO glass 2 M KOH 453 0-0.45 GS 26.3 % _ (0.2 A/g)(GS 1 A/g)film (SCE) $^{7}Co_{3}O_{4}$ nanoparticles (NaOH) ~100 % Ni foam 6 M KOH 0-0.4 293.3 GS -(0.01 A/g) Co_3O_4 nanoparticles (1000 cyc) (Ag/AgCl) 218.6 $(H_2C_2O_4)$ ${}^{8}Co_{3}O_{4}$ mesoporous Ni grid 2 M KOH 0-0.45 93.0 % 370 GS nanoparticles (SCE) (5 mA) (GS 20 mA) Ni gauze 93.5 % ⁹Co₃O₄ mesoporous granules 2 M KOH 0-0.4 427 GS 61 % _ (1.25 A/g)(GS, 7.5 A/g) (SCE) (1000 cyc) ¹⁰Co₃O₄ hollow boxes Ni foam 3 % KOH 0-0.5 278 GS (0.5 A/g) 63.3 % _ (SCE) (GS, 5 A/g)¹¹Porous Co_3O_4 CV (2 mV/s)Ni foil 6 M KOH -0.2-0.4 218 0.48^{a} -(SCE) ¹²Co₃O₄ 3D-nanonet hollow Ni foam 6 M KOH 0.1-0.5 739 2.42 ^a GS (1A/g) 90 % 72.1 % (Hg/HgO) (1000 cyc) (GS 15 A/g) structures Hydrothermal synthesis: thin film electrodes $^{13}Co_3O_4$ nanoflowers 6 M KOH 0-0.34 78.2 % 67.6 % Ni foam 1936.7 GS (SCE) (0.2 A/g)(1000 cyc) (GS 3 A/g)

Table 1. Summary of electrochemical performance of various cobalt oxide electrodes.

$^{14}Co_3O_4$ nanoparticles	Ni sheet	2 M KOH	-0.2-0.4	928	0.473 ^a	GS	93 %	84 %
			(SCE)			(1.2 A/g)	(2200 cyc)	(GS 12 A/g)
$^{15}Co_3O_4$ mesoporous	Ni foam	6 M KOH	0-0.5	1160	3.364 ^a	GS	90.4 %	70.7 %
nanowires			(Hg/HgO)			(2 A/g)	(4700 cyc)	(GS 20 A/g)
$^{16}Co_3O_4$ hollow nanowires	Ni foam	1 M KOH	0-0.55	599	8.985 ^a	GS	91 % (2 A/g,	73.3 %
5 4			(Hg/HgO)			(2 A/g)	7500 cyc)	(GS 40 A/g)
							82 % (10A/g,	× <i>U</i> ,
							7500 cyc)	
$^{17}Co_3O_4$ mesoporous	Ni foam	2 M KOH	0-0.55	754	3.393 ^a	GS	100 %	81 %
nanowires			(Hg/HgO)			(2 A/g)	(4000 cyc)	(GS 40 A/g)
¹⁸ Co ₃ O ₄ nanosheet @	Ni foam	1 M KOH	0-0.44	715	5.44 ^a	GS	100 %	69 %
nanowire arrays			(SCE)			(5 mA/cm^2)	(1000 cyc)	
Co_3O_4 nanosheet arrays				390				58 %
Co_3O_4 nanowire arrays				751				42 %
_								$(GS 30 \text{ mA/cm}^2)$
¹⁹ Co ₃ O ₄ hierarchical porous	Ni foil	2 M KOH	0-0.55	352	0.282 ^a	GS	~100 %	82.7 %
film			(Hg/HgO)			(2 A/g)		
Co ₃ O ₄ nanoflakes				325	0.260 ^a		~100 %	66.8 %
							(2500 cyc)	(GS 40 A/g)
²⁰ Co ₃ O ₄ porous nanowires	Ni foam	6 M KOH	-0.1-0.34	1019.5	1.509 ^a	GS	95 %	45.7 %
			(SCE)			(5 mA/cm^2)	(1000 cyc)	$(GS 50 \text{ mA/cm}^2)$
21 Co ₃ O ₄ nanosheets (NS)	Ni foam	2 M KOH	0-0.45	354	2.29	GS	100 %	-
Co ₃ O ₄ ultrathin NS-urea			(SCE)	1081	3.48	(5 mA/cm^2)	90 %	54.0 %
Co ₃ O ₄ ultrathin NS-HMT				1782	4.90		90 %	51.2 %
							(2000 cyc)	$(GS 30 \text{ mA/cm}^2)$
²² Co ₃ O ₄ /C core-shell	Ni foam	2 M KOH		116	-	GS (4 A/g)	-	82.8 %
nanowires			(Hg/HgO)	mAh/g				(GS 20 A/g)
Co ₃ O ₄ nanowires				81	-		-	72.8 %
				mAh/g				
Hydrothermal synthesis: po	wdered electrodes					-		
23 Co ₃ O ₄ nanosheets	Ni grid	3 M KOH	0-0.6	92	-	GS	-	93 %
(85 %)			(SCE)			(5 mA/cm^2)		$(GS 20 \text{ mA/cm}^2)$
²⁴ Co ₃ O ₄ porous nanorods	Pt foil	2 M KOH	-0.25-0.55	281	-	CV	-	-
(63.5 %)			(SCE)			(5 mV/s)		
²⁵ Co ₃ O ₄ porous nanorods	Ni mesh	6 M KOH	0-0.4	456	2.28 ^a	GS	-	-
(70 %)			(Ag/AgCl)			(1 A/g)		
26 Co ₃ O ₄ nanoneedles	GCE	2 M KOH	0-0.5	111	-	GS	88.2 %	-
Co_3O_4 nanoleaves			-0.15-0.45	44		(2.5 mA/cm^2)	86.9 %	
Co ₃ O ₄ microparticles			-0.15-0.45	62			80 %	
(80 %)							(1000 cyc)	
2 Co ₃ O ₄ long nanowires	Ni foam		-0.1-0.6	260	-	GS	98 %	65.8 %

(80.%)			(SCE)			$(2 \Lambda/\alpha)$	(2000 ave)	$(CS 15 \Lambda/a)$		
$\frac{28}{28}$ Co O subsc	Nimash	6 M VOU		2407		(2 A/g)	(2000 Cyc)	(US 15 A/g)		
CO_3O_4 cubes	ini mesn	0 M KOH	0-0.45 (SCE)	348.7	-	(∇V)	-	-		
(80%)	NI' C. '1		(SCE)	<i>c</i> 0 <i>4</i>	0.018	(5 mV/s)		50.4.0/		
$^{27}\text{Co}_3\text{O}_4$ ultralayers	N1 f01l	I M KOH	-0.05-0.45	604	0.604 "	GS	-	59.4 %		
(80%)			(Hg/HgO)			(4 A/g)		(GS 32 A/g)		
$^{50}\text{Co}_3\text{O}_4$ superstructures	Ni grid	3 M KOH	-0.1-0.45	614	-	GS	77 %	87.3 %		
(83.33 %)			(SCE)			(1 A/g)	(5000 cyc)	(GS, 4 A/g)		
31 Co ₃ O ₄ nanosheets	graphite	2 M KOH	-0.1-0.5	176.8	-	GS	-	88.2 %		
			(Ag/AgCl)			(1 A/g)		(GS, 10 A/g)		
³² CoO crystallites	Ni grid	2 M KOH	0-0.5	88	-	CV	-	-		
			(SCE)			(10 mV/s)				
33 Co ₃ O ₄ nanowires	Ni foam	3 M KOH	0-0.47	163	-	GS	80 %	73 %		
			(Hg/HgO)			(1 A/g)	(1000 cyc)	(GS, 4 A/g)		
34 Co ₃ O ₄ twin spheres with	Ni foam	6 M KOH	-0.05-0.35	781	-	GS	97.8 %	78.2 %		
urchin-like structures			(SCE)			(0.5 A/g)	(1000 cvc)	(GS, 8 A/g)		
$^{35}Co_2O_4$ nanowalls	Ni foam	6 M KOH	-0.05-0.35	997	-	GS	92.3 %	76.1 %		
	1.1.10000	0 111 11011	(SCE)			(0.5 A/g)	(1000 cvc)	(GS, 8 A/g)		
Sol-gel synthesis: nowdered electrodes										
$^{36}Co(OH)$, verogel	Ni gauze	1 M KOH	0-0.45	291	1 222 ^a	GS (2.26				
Co-O, verogel	111 gauze		(SCF)	221	1.222 1.002 a	$m\Delta/cm^2$	-	-		
37 Co O corregol (200 °C)	graphita	1 M NoOH	0.22.0.52	622	0.622 a		06.04	72.0/ (CV 50 mV/s		
Co_3O_4 aeroger (200°C)	graphite		0.23 - 0.33	025	0.023	(25 mV/s)	90 % (1000 ava)	75 % (CV 50 IIIV/S		
Co_3O_4 aerogel (300°C)			(Ag/AgCI)	239	0.239	(23 mv/s)	(1000 cyc)	compared to S		
Co_3O_4 aeroger (400 °C)				1/4	0.174			mv/s)		
³⁸ Co ₃ O ₄ cryogel	Ni foam	2 M KOH	-0.05-0.45	742.3	1.485 ^a	GS	86.2 %	54.4 %		
			(Ag/AgCl)			(0.5 A/g)	(2000 cyc)	(GS 20 A/g)		
Chemical bath deposition: th	nin film electrodes				•					
³⁹ Co ₃ O ₄ nanowires	Ni foam	6 M KOH	0-0.35	746	11.936 ^a	GS	86 %	76.1 %		
			(SCE)			(5 mA/cm^2)	(500 cvc)	$(GS 30 \text{ mA/cm}^2)$		
40 Co ₂ O ₄ nanowires	Ti	1 M KOH	-0.4-0.4	922	_	GS	95 %	54.2 %		
Ag coated- Co_2O_4 nanowires		1	(SCE)	1006		$(2, A/\sigma)$	95 %	83.3 %		
			(502)	1000		(211/8)	(5000 cvc)	(GS 10 A/g)		
41 Co ₂ O ₄ thin film	Cu	1.5 M KOH	-0.4-0.5	118	0.051 ^a	CV	-	(0010115)		
	Cu	1.5 W KOII	(SCE)	110	0.051	(50 mV/s)				
$^{42}Co_2O_4$ thin film	ITO glass	2 M KOH	0-0.45	227	-	GS	65 %	67.0 %		
00304 unit film	II O glubb	2 10 11011	(SCE)	227		(0.2, A/g)	(1000 cvc)	(GS 1 4 A/g)		
43 Co ₂ O ₂ nanonets	Ni foam	1 M NaOH	-0.2-0.6	1090	1 526 ^a	CV	(1000 cjc)	~ 68 %		
	111100111	1 101 100011	(Hg/HgO)	1070	1.520	(10 mV/s)		(CV 50 mV/s)		
Flactrachamical danasition	thin film alastrodes		(11g/11g())	1		(10 11 ¥/5)				
^{44, 45} Co O thin film	An foil	2t0/ KOU	0.25 to 0.05	70		CV				
CO_3O_4 unin mim	AU IOII	3 WI% KUH	-0.55 to -0.05	19	1 -		-	-		

			0-0.5	164		(20 mV/s)		
			(SCE)	101		(20 m (75)		
⁴⁶ Co ₂ O ₄ -CTAB	ITO glass	1 M NaOH	0-0.45	491	_	GS	_	-
Co_3O_4 -SDS	110 gruss	1 10 1 10011	(Ag/AgCl)	373		(1 A/g)		
Co_3O_4 -without surfactant			× 8 8-7	255				
47 Co ₃ O ₄ nanowalls	Ni foam	1 M KOH	0-0.55	325	0.520 ^a	GS	-	76.0 %
Co_3O_4 dense film			(Hg/HgO)	230	0.414 ^a	(2 A/g)		72.6 %
5.						ζ <i>ζ,</i>		(40 A/g)
⁴⁸ Co ₃ O ₄ nanoplates	Ni foam	1 M KOH	-0.2-0.5	465.5	-	CV	96.5 %	63.2 %
(scrapped from stainless			(Ag/AgCl)			(5 mV/s)	(500 cyc)	(50 mV/s)
steel)							•	
⁴⁹ Co ₃ O ₄ monolayer hollow-	Ni foil	1 M KOH	0-0.55	358	0.179 ^a	GS	~100 %	85.2 %
sphere arrays			(Hg/HgO)			(2 A/g)	(4000 cyc)	(40 A/g)
⁵⁰ Co ₃ O ₄ porous nanowalls	Ni foam	1 M KOH	0-0.55	443	-	GS	94.3 %	75.4 %
			(Hg/HgO)			(2 A/g)	(3000 cyc)	(40 A/g)
⁵¹ Co ₃ O ₄ mesoporous	Ni foam	2 M KOH	0-0.45	2735	3.829 ^a	GS	~99 %	53.8 %
nanosheets			(SCE)			(2 A/g)	(3000 cyc)	(10 A/g)
Spray deposition: thin film e	electrodes							
52 Co ₃ O ₄ thin film	FTO glass	2 M KOH	0-0.6	74	0.032 ^a	CV	-	-
	-		(SCE)			(5 mV/s)		
⁵³ Co ₃ O ₄ nanostructured thin	Stainless steel	6 M KOH	0-0.35	~250	-	GS	72.2 %	~60 %
film			(Ag/AgCl)			(~0.1 A/g)	(1000 cyc)	(GS ~4 A/g)
Other methods								
⁵⁴ Co ₃ O ₄ nano/micro	Ni grid	6 M KOH	0-0.35	208	-	GS	97 %	-
superstructures			(SCE)			(1 A/g)	(1000 cyc)	

Table 2. Summary of electrochemical performance of various cobalt hydroxide and oxyhydroxid
--

Materials	Current collector	Electrolyte	Potential window (V)	$C_{\rm m}$	$C_a (F/cm^2)$	Method	Cycle life	Rate capability
Chemical precipitation: pow	dered electrodes		willdow (v)	(r /g)			(cyching no.)	
$^{55}\alpha$ -Co(OH) ₂ mesoporous particles	Ni grid	1 M KOH	-0.15-0.45 (SCE)	341	2.558 ^a	GS (5 mA/cm ²)	81 % (700 cyc)	-
⁵⁶ β-Co(OH) ₂ nanowhiskers	Ni grid	2 M KOH	-0.15-0.5 (SCE)	325	4.875 ^a	GS (20 mA/cm ² or 1.33 A/g)	93 % (1000 cyc)	85.8 % (80 mA/cm ² or 5.33 A/g)
$^{57}\beta$ -Co(OH) ₂ sheets	Ni foam	1 M KOH	-0.15-0.45 (SCE)	416.7	1.063 ^a	GS (5 mA)	78 % (500 cyc)	-
$ \begin{array}{c} {}^{58}\alpha\text{-Co(OH)_2-Cl} \\ \alpha\text{-Co(OH)_2-NO_3}^- \\ \alpha\text{-Co(OH)_2-CH_3COOH}^- \\ \alpha\text{-Co(OH)_2-SO_4}^{2-} \end{array} $	Ni foam	6 M KOH	-0.1-0.4 (Hg/HgO)	697 638 526 420	-	GS (1 A/g)	73 % 56 % 57 % 48 % (100 cvc)	-
α-Co(OH) ₂ -benzoate α-Co(OH) ₂ -DS	Ni foam	2 M KOH	0-0.45 (SCE)	852 1055	0.852- 1.704 ^a 1.055- 2.110 ^a	GS (1 A/g)	72 % 95 %	16.8 % 39.8 %
α-Co(OH) ₂ -NO ₃ ⁻ (nanocones)				630	0.630- 1.260 ^a		81 % (2000 cyc)	11.4 % (10 A/g)
59 α -Co(OH) ₂ nanoflakes	Ni gauze	2 M KOH	-0.2-0.4 (SCE)	735	5.88 ^a	$\frac{\text{GS}}{(5 \text{ mA/cm}^2)}$	-	82.9 % (30 mA/cm ²)
$^{60}\beta$ -Co(OH) ₂ triangle taper Co ₃ O ₄ mesoporous triangle taper	Ni foam	2 M KOH	-0.3-0.5 -0.2-0.5 (SCE)	137.6 91.5	~0.894 ^a ~0.595 ^a	CV (5 mV/s)	-	71.2 % 77.5 % (CV 50 mV/s)
⁶¹ Co/Co(OH) ₂ core-shell structure (thin film electrodes)	Co foam (the core)	2 M KOH	0-0.5 (Ag/AgCl)	525	-	GS (0.5 A/g)	81. 5 % (2000 cyc)	-
Hydrothermal synthesis: pov	wdered and thin film	electrodes	•		-	-	•	T
$^{02}\alpha$ -Co(OH) ₂ nanoflakes	Ni grid	2 M KOH	0-0.5 (Ag/AgCl)	248	1.240 ª	GS (0.5 A/g)	-	79.4 % (GS 2 A/g)
$^{63}\beta$ -Co(OH) ₂ urchin-like arrays of nanowires	Ni grid	3 M KOH	-0.3-0.45 (SCE)	421	3.158 ^a	GS (10 mA/cm2 or 1.33 A/g)	96.4 % (1000 cyc)	87.9 % (40 mA/cm ² or 5.33 A/g)
$^{64}\beta$ -Co(OH) ₂ urchin-like arrays of nanobelts				434	3.255 ^a	$\begin{bmatrix} GS \\ (10 \text{ mA/cm}^2 \text{ or} \end{bmatrix}$	92.1 % (1500 cyc)	84.1 % (40 mA/cm ² or 5.33

$^{65}\alpha$ -Co(OH) ₂ mesocrystal nanosheets				506	3.795 ^a	1.33 A/g) GS (10 mA/cm ² or 1.33 A/g)	97.0 % (2000 cyc)	A/g) 84.4 % (40 mA/cm ² or 5.33 A/g)		
⁶⁶ α-Co(OH) ₂ long nanowire arrays (thin film electrode)	Graphite	2 M KOH	-0.1-0.45 (SCE)	642.5	0.643 ^a	GS (1 A/g)	~100 % (5000 cyc)	51.5 % (20 A/g)		
$^{67}\beta$ -Co(OH) ₂ nanocone arrays	Ni foam	2 M KOH	0-0.5 (Hg/HgO)	562	1.967 ^a	GS (2 A/g)	88 % (3000 cyc)	67.1 % (32 A/g)		
Electrochemical deposition: thin film electrodes										
$^{68}\alpha$ -Co(OH) ₂ nanosheets	Stainless steel	1 M KOH	0-0.4 (Ag/AgCl)	881	0.705 ^a	GS (1 A/g)	91 % (2000 cyc)	87.6 % (10 A/g)		
$^{69, 70}$ α -Co(OH) ₂ mesoporous nanosheets	Ti plate	2 M KOH	-0.1-0.45 (SCE)	1084	-	GS (4 A/g)	95.1 % (500 cvc)	67.1 % (48 A/g)		
α -Co(OH) ₂ nanosheets				370	-		-	-		
$^{71}\alpha$ -Co(OH) ₂ mesoporous nanosheets	Ni foam	2 М КОН	-0.1-0.45 (SCE)	2646	-	GS (4 A/g)	96.1 % (300 cyc)	85.9 % (48 A/g)		
$^{72}\beta$ -Co(OH) ₂ nanoflakes	Ni foam	5.5 M KOH	-0.05-0.5 (Hg/HgO)	3254.5	1.627 ^a	GS (5 A/g)	34 % (300 cyc)	73.1 % (60 A/g)		
⁷³ Amorphous Co(OH) ₂ nanosheets	Stainless steel	1 M NaOH 0.1 M NaOH 0.05 M NaOH	0-0.60 0-0.75 0-0.85 (Hg/HgO)	487 390 375	0.487 ^a 0.390 ^a 0.375 ^a	GS (10 A/g)	-	-		
⁷⁴ Amorphous Co(OH) ₂ nanoflakes	Stainless steel mesh	1 M KOH	~0-0.42 (SCE)	534 (at 0.62 mg/cm ²)	0.331 ^a (at 0.62 mg/cm ²)	GS (0.1 mA/g)	81 % (3000 cyc)	85 % (from 0.714 to 7.143 A/g)		
75 Co(OH) ₂ nanoflakes (water- ethanol) Co(OH) ₂ nanoflakes (water)	Ni foam	2 M KOH	0-0.4 (SCE)	2369 1035	-	GS (2 A/g)	91 % (350 cyc)	40.5 (32 A/g)		
^{/6} α-Co(OH) ₂ nanosheets with 0 % NMP with 10 % NMP with 20 % NMP with 30 % NMP	Stainless steel	1 M KOH	-0.1-0.45 (Ag/AgCl)	473 571 651 473	$\begin{array}{c} 0.350\ ^{a}\\ 0.423\ ^{a}\\ 0.482\ ^{a}\\ 0.350\ ^{a} \end{array}$	GS (2 A/g)	- - 76 % (500 cyc)	- - 75.2 % (CV 50 mV/s to 5 mV/s)		
$^{77}\alpha$ -Co(OH) ₂ nanosheets	Ni foam	1 M KOH	-0.1-0.45 (SCE)	1473	-	GS (2 A/g)	88 % (1000 cyc)	67.0 % (GS 32 A/g)		
⁷⁸ Co compound nanowires	ITO glass	0.1 M LiOH	0.05-0.55	420	-	GS	~100%	-		

			(SCE)			(0.5 mA/cm^2)	(1000 cyc)		
$^{79}\alpha$ -Co(OH) ₂ mesoporous	Ti/Si	1 M KOH	-0.1-0.5	993	-	GS	-	81.5 %	
nanosheets			(Ag/AgCl)			(1 A/g)		(GS 20 A/g)	
⁸⁰ CoOOH nanoflakes	Ni foil	1 M KOH	-0.15-0.4	200	-	CV	-	79.1 %	
			(SCE)			(10 mV/s)		(CV 250 mV/s)	
								63.6 %	
								(CV 500 mV/s)	
⁸¹ CoOOH nanoflakes	stainless steel	1 M KOH	0.2-0.45	449	-	CV	56 %	-	
			(SCE)			(5 mV/s)	(10000 cyc)		
Chemical bath deposition: thin film electrodes									
⁸² Co(OH) ₂ nanorods	Ni foam	1 M KOH	-0.2-0.5	1116	-	GS (2 A/g)	-	37.8 %	
			(Ag/AgCl)					(10 A/g)	

Materials	Current collector	Electrolyte	Potential window (V)	$C_{\rm m}$	C_a (F/cm ²)	Method	Cycle life	Rate capability
83 CoS _x amorphous particles	Ni gauze	6 M KOH	-0.3-0.35 (SCE)	475	6.65	GS (5 mA/cm ²)	91 % (100 cvc)	77.6 % (GS 50 mA/cm ²)
⁸⁴ CoS nanowires	Ni foam	3 М КОН	-0.3-0.4 (SCE)	508	-	$\frac{\text{GS}}{(2.5 \text{ mA/cm}^2)}$	81.2 % (500 cyc)	74.2 % (GS 20 mA/cm ²)
⁸⁵ CoS _x amorphous nanoparticles	Ni foam	2 M KOH	-0.30-0.45 (SCE)	910	-	GS (0.4 A/g)	-	71 % (GS 4 A/g)
⁸⁶ CoS spheres	Ni foil	2 M KOH	-0.2-0.55 (Hg/HgO)	363	-	CV (5 mV/s)	67 % (300 cyc)	87 % (CV 50 mV/s)
⁸⁷ CoS flowers	Ni foam	6 M KOH	-0.7-0.7 (SCE)	389	-	$\begin{array}{c} \text{GS} \\ \text{(5 mA/cm}^2) \end{array}$	-	71.2 % (GS 50 mA/cm ²)
⁸⁸ Co _{1-x} S hierarchical microtubes	Ni foam	6 M KOH	-0.3-0.35 (SCE)	201	-	$\begin{array}{c} \text{GS} \\ \text{(5 mA/cm}^2) \end{array}$	-	-
⁸⁹ CoS hollow nanosheets	FTO substrate	1 M KOH	0-0.47 (SCE)	138	1.35	$\begin{array}{c} \text{GS} \\ (2 \text{ mA/cm}^2) \end{array}$	-	-
⁹⁰ CoS _{1.097} hierarchical flowers	Ni foam	2 M KOH	0-0.5 (SCE)	555	-	$\frac{\text{GS}}{(5 \text{ mA/cm}^2)}$	98 % (2500 cyc)	83.6 % (GS 200 mA/cm ²)
⁹¹ CoS ₂ ellipsoids	Ni foam	2 M KOH	-0.1-0.4 (SCE)	1040	-	GS (0.5 A/g)	66 % (5 A/g) 44 % (2.5 A/g) (1000 cyc)	72.1 % (5 A/g)
⁹² CoS nanosheets	Ni foam	1 M KOH	-0.1-0.45 (Ag/AgCl)	1471	0.588 ^a	GS (4 A/g)	~100 % (1000 cyc)	88.8 % (40 A/g)

Table 3. Summary of electrochemical performance of various <u>cobalt sulfides</u>.

Materials	Current collector	Electrolyte	Potential	C _m	Ca	Method	Cycle life	Rate capability
			window (V)	(F /g)	$(\mathbf{F/cm}^2)$		(cycling no.)	
⁹³ Co-MOF film	ITO glass	1 M LiOH	0-0.5	206.76	-	GS	98.5	-
			(Ag/AgCl)			(0.6 A/g)	(1000 cyc)	
94 Na _{0.6} CoO ₂ .yH ₂ O	glassy carbon	10 M NaOH	-0.45-0.28	440	-	CV	-	-
Li _{0.5} CoO ₂			(Ag/AgCl)			(20 mV/s)		
⁹⁵ Cobalt carbonate hydroxide	Ni foam	2 M NaOH	0-0.45	1075	8.6	GS	92 %	72.4 %
Co-Al-CO ₃ LDH			(SCE)			(5 mA/cm^2)	(2000 cyc)	
				387	4.06 ^a		-	56.8 %
								$(GS, 50 \text{ mA/cm}^2)$
⁹⁶ NH ₄ CoPO ₄ .H ₂ O	Ni foam	3 M KOH	0-0.4	369.4	-	GS (0.625	99.7 % (400	-
			(SCE)			A/g)	cyc)	
$^{97}Co_{11}(HPO_3)_8(OH)_6$	Ni foam	3 M KOH	0-0.6	312	-	GS	89.4 %	63.5 %
nanoribbons			(SCE)			(1.25 A/g)	(3000 cyc)	(GS, 12.5 A/g)

Table 4. Summary of electrochemical performance of other cobalt compound

 Table 5. Summary of electrochemical performance of various cobalt-based LDHs.

Materials	Current	Electrolyte	Potential	C _m	Ca	Method	Cycle life	Rate capability
	collector		window (V)	(F / g)	$(\mathbf{F/cm}^2)$		(cycling no.)	
⁹⁸ Co/Ni-Al LDHs	Ni grid	6 M KOH	0-0.5	960	19.2 ^a	GS	-	-
	_		(Hg/HgO)			(0.4 A/g)		
⁹⁹ Co/Ni-Al LDHs/TiO ₂				1053	5.265 ^a	GS	-	-
nanotubes						(5 mA/cm^2)		
¹⁰⁰ Co-Al LDH (BA)	Ni foam	1 M KOH	-0.2-0.55	212.2	-	GS	86.1 % (1000)	74.4 %
Co-Al LDO			(SCE)	199.9	-	(0.25 A/g)	93.5 % (781)	74.7 %
Co-Al LDH (OH)				190.9	-		100 % (1000)	69.3 %
101								(2 A/g)
¹⁰¹ Co-Al LDHs (OH)	Ni foam	1 M LiOH	-0.2-0.5	322	-	GS	69.8 %	82.9 %
102			(SCE)			(0.5 A/g)	(1000 cyc)	(5 A/g)
¹⁰² Co-Al LDHs	Ni foam	1 M KOH	-0.1-0.5	226	-	GS	-	-
		1 M KOH + 0.1	(SCE)	712	-	(2 A/g)	67.0 % (200)	-
		$M K_3 Fe(CN)_6$						
		1 M KOH + 0.1		317	-		95.9 % (200)	-
103		$M K_4 Fe(CN)_6$						
¹⁰⁵ Co-Al LDHs	Ni foam	1 M KOH	-0.1-0.5	447	-	GS	99 %	-
Co-In LDHs			-0.2-0.5	159	-	(1 A/g)	99 %	-
Co-Cr-LDHs			-0.1-0.5	78	-		96 %	-
104			(SCE)					
¹⁰⁴ Co-Al LDHs	Ni foam	6 M KOH	-0.15-0.55	684	13.68 ^a	GS	80 %	-
105			(Hg/HgO)		_	(60 mA/g)	(1000 cyc)	
¹⁰³ Co-Al LDHs	ITO glass	1 M NaOH	0-0.55	667	-	GS	93 %	94.5 %
106	(pretreated)		(Hg/HgO)			(25 µA/g)	(3000 cyc)	(GS 250 µA/g)
¹⁰⁰ Co _{0.75} -Al _{0.25} LDHs				833			95 %	-
107							(2000 cyc)	
107 Co _{0.72} Ni _{0.28} LDHs	stainless steel	1 M KOH	0-0.4	2104	0.438 ª	GS	-	-
Ni(OH) ₂			(Ag/AgCl)	323	0.067 "	(1 A/g)	-	-
$Co(OH)_2$				860	0.179 "		-	-
¹⁰⁹ Co-Al LDHs				843	0.176 "		-	-
¹⁰⁵ CoNiAl LDHs				1263	1.053		87%	-
			0.0.7	1000			(1000 cyc)	0.6.004
Co-N1 LDHs	N1 foam	6 M KOH	0-0.5	1809	-	GS	90.2 %	86.2%
$Co(OH)_2$			(Hg/HgO)	638		(1 A/g)	(1000 cyc)	(GS 10A/g)
N1(OH) ₂				1399				
^{····} Zn-Co LDHs	ITO glass	3 M KOH	-0.1-0.45	~160-	-	GS	-	-
			(SCE)	170		(1 A/g)		

¹¹² Co(OH) ₂	graphite	1 M KOH	0-0.4	490	-	GS	98.7 %	-
Co _{0.75} -Ni _{0.25} (OH) ₂			(Ag/AgCl)	1100		(10 A/g)	(100 cyc)	
Co _{0.5} -Ni _{0.5} (OH) ₂				1580				
Co _{0.25} -Ni _{0.75} (OH) ₂				1400				
Ni(OH) ₂				740				
$^{113}Ni_{0.25}Co_{0.75}(OH)_2$	Ni foam	2 M KOH	-0.1-0.4	928.4	9.59	GS (5	82-85 %	81.1 %
nanowire@nanoplatelet array			(SCE)			mA/cm^2)	(1000 cyc)	(50 mA/cm^2)
¹¹⁴ Co-Al LDHs	Pt plate	0.1 M NaOH	0-0.6	400	-	CV	-	-
Al ₂ O ₃ -CoO precursor			(Hg/HgO)	250		(5 mV/s)		
¹¹⁵ Co ^{II} Co ^{III} -CO ₃ LDHs	Pt (0.07 cm^2)	0.1 M KOH	0-0.45	335	-	GS (0.5 A/g)	-	59.7 %
			(SCE)					(GS 5 A/g)
Co ₂ Al-CO ₃ LDHs				265	-		-	45.3 %
¹¹⁶ Ni-Co LDH	Ni foam	1 M KOH	0-0.5	2682	-	GS (3 A/g)	-	63.6 %
			(SCE)					(GS 20 A/g)

Materials	Current collector	Electrolyte	Potential window (V)	$C_{\rm m}$ (F/g)	C_a (F/cm ²)	Method	Cycle life	Rate capability
$^{117}(\text{Co-Ni})(\text{OH})_2 \text{ nH}_2\text{O}$	granhite	1 M NaOH	0.1-0.42	700	0.301^{a}	GS	-	
	Stupinte	1 101 100011	(Ag/AgCl)	100	0.501	(0.6 A/g)		
¹¹⁸ Ni-Co DH microspheres	Ni foam	6 M KOH	0-0.4	2275	-	GS	92.9 %	44 %
		0 10 11011	(SCE)			(1 A/g)	(5000 cvc)	(GS 25A/g)
$^{119}CO_{3}O_{4}/Ni(OH)_{2}$	Ti plate	1 M NaOH	0.04-0.52	1144	0.342 ^a	CV	93.4 %	66 %
$Co(OH)_2/Ni(OH)_2$			(Ag/AgCl)	823	0.412 ^a	(5 mV/s)	63.2 %	(CV 100 mV/s)
Ni(OH) ₂			(88)	113	0.057 ^a	(0	-	-
Co_3O_4				161	0.081 ^a		-	-
¹²⁰ Co-Ni/Co-Ni oxides	stainless steel	1 M KOH	-0.7-0	331	0.046 ^a	GS	-	-
			(Ag/AgCl)			(1 A/g)		
¹²¹ NiCo ₂ O ₄ aerogel	graphite	1 M NaOH	0.04-0.52	1400	0.56 ^a	CV	91 %	-
2 4 0	0 1		(Ag/AgCl)			(25 mV/s)	(2000 cyc)	
122 Co-Ni oxides (1:2)	Ni foam	1 M KOH	0-0.4	1539	7.695 ^a	GS	47 %	73.8 %
Co-Ni oxides (1:1)			(SCE)	1410		(1 A/g)	(2000 cyc)	(GS 5 A/g)
Co-Ni oxides (1:4)			× ,	1060		× <i>U</i> /	× 5 /	× <i>8</i> /
Ni(OH) ₂ /NiO				1289				
Co ₃ O ₄				361				
¹²³ NiCo ₂ O ₄ (submicron)	Ni mesh	1 M KOH	0-0.45	217	1.215 ^a	GS	96.3 %	86.8 %
$NiCo_2O_4$ (nanoparticles)			(SCE)	188	1.053 ^a	(1 mA/cm^2)	85.1 %	(20 mA/cm^2)
$NiCo_2O_4$ (coral-like)			`	103	0.577 ^a	· · · · · ·	83.5 %	-
2							(600 cyc)	
¹²⁴ Ni-Co oxide	Ni foam	6 M KOH	-0.1-0.4	286.9	-	GS	-	-
			(SCE)			(0.2 A/g)		
¹²⁵ Ni-Co oxide porous	Ni foam	2 M KOH	0-0.55	867.3 ^α	-	GS	93.5 %	92.3 %
nanoflakes			(Hg/HgO)			(1 A/g)		(GS 10 A/g)
				^α 1550 a	after activati	on		
$^{126}Co_{0.56}Ni_{0.44}$ oxide	Ni gauze	2 M KOH	0-0.4	1227	9.816 ^a	GS	-	-
nanoflakes			(SCE)			(0.625 A/g)		
¹²⁷ NiCo ₂ O ₄	Ni mesh	1 M NaOH	0-0.45	671	0.403 ^a	GS	98 %	-
			(SCE)			(1 A/g)	(2500 cyc)	
¹²⁸ NiCo ₂ O ₄ mesoporous	graphite paper	1 M KOH	-0.05-0.45	743	-	GS	93.8 %	78.6 %
nanowires			(Ag/AgCl)			(1 A/g)	(3000 cyc)	(GS 40 A/g)
129 NiCo ₂ O ₄ (Ni/Co = 1)	Ni foam	6 M KOH	0-0.5	722	0.722	GS	80 %	79 %
$NiCo_2O_4$ (Ni/Co = 2)			(Hg/HgO)	760	0.760	(1 A/g)	81 %	70 %
							(3000 cyc)	
¹³⁰ NiCo ₂ O ₄	graphite paper	1 M KOH	-0.1-0.5	658	0.658 ^a	GS	98.43 %	80.5 %

Table 6. Summary of electrochemical performance of <u>cobalt-based binary compounds and heterostructures</u>.

Co ₃ O ₄			(Ag/AgCl)	60 194	0.060^{a}	(1 A/g)	96.67 % 92.11 %	51.7 % 78 4 %
NO				174	0.194		(1000 cvc)	(GS. 10 A/g)
¹³¹ Co(OH) ₂ /Ni(OH) ₂ (3:2) Ni(OH) ₂ Co(OH) ₂	Ni foam	1 M LiOH	-0.3-0.55 (SCE)	~270 ~380 ~100		GS (0.5 A)	88.2 % 41.6 % 47.4 % (1000 cvc)	-
132 NiCo ₂ O ₄ nanorods NiCo ₂ O ₄ nanoflakes 133 NiCo ₂ O ₄ nanorods	ITO glass stainless steel	2 M KOH 1 M KOH	0-0.5 (Ag/AgCl) 0-0.45 (Ag/AgCl)	490 330 456	$\begin{array}{c} 0.147 \\ 0.099 \\ ^{a} \\ 0.137 \\ ^{a} \end{array}$	CV (20 mV/s) CV (20 mV/s)	93 % (1000 cyc) 91 % (1000 cyc)	- - 70 % (CV, 200 mV/s)
¹³⁴ Co-Ni hydroxides Co hydroxide Ni hydroxide	stainless steel	2 M KOH	0-0.4 (SCE)	672 354 425	-	CV (5 mV/s)	87 % 78 % 82 % (1000 cyc)	57.6 % (CV 100 mV/s) -
135 NiCo ₂ O ₄ ultralayered mesoporous nanowires Co ₃ O ₄ NiO	Ni foam	6 M KOH	-0.1-0.35 (SCE)	401 70 258	3.4	GS (1 A/g)	90 % (5000 cyc)	75.1 % (GS, 8 A/g)
¹³⁶ NiCo ₂ O ₄ porous nanosheets	FTO glass	1 M KOH	0-0.5 (SCE)	506	-	GS (1 A/g)	94 % (2000 cyc)	40 % (GS, 10 A/g)
¹³⁷ Co(OH) ₂ /Ni(OH) ₂ Ni(OH) ₂	Ni foam	6 M KOH + 15g/L LiOH	0.1-0.56 (Hg/HgO)	2193 1914	5.483 ^a 4.785 ^a	GS (2 A/g)	84.7 % 69.1 % (1000 cyc)	63.3 % 45.7 % (GS, 20 A/g)
$^{138}Ni_{0.37}Co_{0.63}(OH)_2$	glassy carbon	1 M NaOH + 0.5 M Na ₂ SO ₄	0-1.5 (RHE)	1840	0.017 ^a	CV (1 mV/s)	99.2 % (500 cyc)	48.4 % (CV, 50 mV/s)
¹³⁹ NiO/NiCo ₂ O ₄ /Co ₃ O ₄ composite	Ni foam	2 M KOH	0-0.4 (SCE)	1717	-	$\frac{\text{GS}}{(5 \text{ mA/cm}^2)}$	94.9 % (1000 cyc)	75.5 % (GS, 50 mA/cm ²)
¹⁴⁰ NiCo ₂ O ₄ nanosheets	Ni foam	2 M KOH	0-0.45 (SCE)	2925	3.51	GS (1.8 mA/cm ²)	93.3 % (3000 cyc, 8.5 mA/cm ²) 83.1 % (3000 cyc, 25 mA/ cm ²)	58.4 % (GS, 19.8 mA/cm ²)
141 NiCo ₂ O ₄ nanotubes	Ni foam	2 M KOH	0-0.4 (Ag/AgCl)	1647.6 976.5	-	GS (1 A/g)	93.6 % (3000 cyc)	77.3 % (GS 25A/g) 48.0 %
$NiCo_2O_4$ nanobelts				819.9	-		-	50.8 %
¹⁴² NiCo ₂ O ₄ nanosheets	Ni foam	3 M KOH	-0.1-0.3	2010	1.608 ^a	GS (2 A/g)	94 %	72.1 %

			(0.07)	1			1000	1000 00 111
			(SCE)				(2400 cyc)	(GS, 20 A/g)
¹⁴³ NiCo ₂ O ₄ nanoneedles	Ni foam	2 M KOH	0-0.4	3466	3.12	GS	89.3 %	25.3 % (GS, 11.12
			(SCE)			(1.11 mA/cm^2)	(2000 cyc)	mA/cm^2)
¹⁴² NiCo ₂ O ₄ nanoflakes-1	Ni foam	2 M KOH	0-0.65	778.2	-	GS (1A/g)	-	84.1 %
(molar ratio $Co/Ni = 1$)			(Hg/HgO)			× 0,		
$NiCo_2O_4$ nanoflakes-2				867.3				92.3 %
(molar ratio $Co/Ni = 2$)								/ /
C_{0}				460.0				79.0 %
NiO				518.2				94.7 %
1110				510.2				(GS = 10 A/g)
¹⁴⁴ NiCo O shain lika	Nifoom	6 M KOH	0.0.45	1294		CS(2A/a)	0750/	(US, 10 A/g)
	INI IOalli	0 M KOH	$(4 \times (4 \times C^{1}))$	1204	-	US (2 A/g)	97.5 % (2000 ava)	(CS 20 A/a)
	NL Comment		(Ag/AgCI)	1650		OO(1 A/z)	(3000 cyc)	(US 20 A/g)
NiCo ₂ O ₄ urchin-like	INI IOam	3 M KOH	0-0.4	1650		GS (1 A/g)	81.8 %	81.7 %
nanostructures			(SCE)	1000			(2000 cyc)	(GS 15 A/g)
$^{140}NiCo_2O_4$ nanosheets	Ni foam	2 M KOH	0-0.55	1088	2.61	GS (5	~100 %	78.5 %
147			(SCE)			mA/cm ²)	(1800 cyc)	$(GS 30 \text{ mA/cm}^2)$
¹⁴ /NiCo ₂ O ₄ mesoporous	Ni foam	2 M KOH	0-0.45	-	3.51	GS (1.8	93.3 %	58.4 %
nanosheets			(SCE)			mA/cm^{2})	(3000 cyc)	(19.8 mA/cm^2)
								39.0 %
								(48.6 mA/cm^2)
¹⁴⁸ Co _{0.45} Ni _{0.55} O/rGO	graphite paper	1 M KOH	0-0.5	823	-	GS (1 A/g)	100 %	78.2 % (10 A/g)
			(Ag/AgCl)				(1000 cyc)	
		•			•	•	•	
149 ZnCo ₂ O ₄	stainless steel	6 M KOH	-0.1-0.3	77	-	CV	-	54.5 %
2 7			(2-electrode)			(5 mV/s)		(CV 50 mV/s)
150 ZnCo ₂ O ₄ aerogel	graphite	1 M NaOH	0.05-0.5	700	0.35 ^a	CV	95 %	82.1 %
	8- ··r		$(A\sigma/A\sigma Cl)$			(5 mV/s)	(3000 cvc)	(CV 25 mV/s)
¹⁵¹ Mn-Ni-Co oxide	Ni grid	6 M KOH	-0.1-0.4	1080	1_	GS	~100 %	-
Will Wi Co oxide	in gina	0 m Rom	(SCF)	1000		(5 mA)	(1000 gvc)	
$^{152}(C_{0} M_{n}) O_{10}$ nonowiros	Ni foom	6 M KOH	0.037	611.4			(1000 Cyc)	46.5.%
(CO,WIII)3O4 nanowites	INI IOalli		$(\Lambda \alpha / \Lambda \alpha C1)$	011.4	-	(2.38 A/a)	(2000 ave)	$(CS 23 8 \Lambda/a)$
Niekol aphalt gulfidag			(Ag/AgCI)			(2.38 A/g)	(2000 Cyc)	(0523.6R/g)
153NiCo Schollow populator	N: fa and	2 M KOU	0104	427	0.010.8	CC(1 A/z)	91.0/	52.0.0/
$NICO_2S_4$ nonow nanopiates	INI IOalli	э м коп	-0.1-0.4	437	0.010	US (1 A/g)	δ1 % (1000 · · · ·)	35.2 % (CS 20 A ())
1542200			(SCE)	1000			(1000 cyc)	(GS 20 A/g)
$^{134}N_1Co_2S_4$ porous nanotubes	N1 foam	6 M KOH	-0.1-0.5	1093	-	GS (0.2 A/g)	63 %	73.2 %
			(Hg/HgO)				(1000 cyc)	(GS 2 A/g)
								50.3 %
155								(GS 5 A/g)
¹³³ NiCo ₂ S ₄ nanotubes	Ni foam	6 M KOH	0-0.55	2398	14.39	GS (5	92 %	67.7 %
			(Hg/HgO)			mA/cm^{2})	(5000 cyc)	(150 mA/cm^2)

$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	Ni foam	2 M KOH	0-0.5 (SCE)	895 870	0.895 ^a 0.870 ^a	GS (1 A/g)	85.7 % (1500 cyc) 86.5 %	65.4 % (GS 20 A/g) 50.1 %
¹⁵⁶ CoNi ₂ S ₄ nanoparticles	Ni foam	3 M KOH	0-0.4 (SCE)	1169	-	GS (1 A/g)	~100 % (2000 cyc)	60.1 % (5 A/g)
¹⁵⁷ Ni-Co sulfide nanowires	Ni foam	1 M KOH	0-0.45 (Ag/AgCl)	2415	6.0	GS (2.5 mA/cm ²)	78.5 % (3000 cyc)	48.7 % (30 mA/cm ²)
158 NiCo ₂ S ₄ nanotubes	Ni foam	6 M KOH	-0.1-0.4 (SCE)	738	3.10 ^a	GS (4 A/g)	93.4 % (4000 cyc)	78 % (32 A/g)
¹⁵⁹ NiCo ₂ S ₄ urchin-like nanostructures	Ni foam	6 M KOH	0-0.565 (Hg/HgO)	1149	2.03-3.04 a	GS (1 A/g)	91.4 % (5000 cyc)	77.3 % (20 A/g) 66.2 % (50 A/g)
Heterostructures								
¹⁶⁰ Co ₃ O ₄ nanowire@ MnO ₂ nanosheets	stainless steel	1 M LiOH	-0.2-0.6 (Ag/AgCl)	480	0.71	$\frac{\text{GS}}{(4 \text{ mA/cm}^2)}$	97.3 %	56 % (GS, 44.7 mA/cm ²)
Co ₃ O ₄ nanowire				-	~0.22		82.6 % (1000 cyc)	
¹⁶¹ CoO nanowire@ Ni(OH) ₂ nanoflakes	Ni foam	1 M NaOH	0.01-0.52 (Ag/AgCl)	798.3	2.39 ^a	GS (1.67 A/g)	96.7 % (2000 cyc)	84 % (GS, 13.33 A/g)
¹⁶² Co ₃ O ₄ nanowire@ NiO nanoflakes	Ni foam	2 M KOH	0-0.6 (Hg/HgO)	853	2.56 #	GS (2 A/g)	95.1 %	85 %
Co ₃ O ₄ nanowire arrays NiO nanoflakes arrays				642 178	1.36 * 0.16 [#]		85.5 % 56.7 %	76.7 % 66.6 %
${}$ capacitance values after 6000	cycles						(0000 Cyc)	(03, 40 A/g)
¹⁶³ CoO porous nanowalls@Ni(OH) ₂	Ni foam	1 M NaOH	0-0.55 (Ag/AgCl)	2374.0	11.49	GS (5 mA/cm ²)	68.9 % (5000 cyc)	56.5 % (40 mA/cm ²)
nanowalls			(88)	539.8	2.32	GS (1.17 A/g)	~95 % (5000 cyc)	67.5 % (9.30 A/g)
¹⁶⁴ Co ₃ O ₄ @Co(OH) ₂ nanowire arrays	Ni foam	2 M KOH	0-0.4 (Hg/HgO)	1095	1.64 ^a	GS (1 A/g)	92 % (2000 cyc)	74.2 % (40 A/g)
¹⁶⁵ Co ₃ O ₄ nanosheets@Ni-Co oxide nanorods	Ni foam	1 M KOH	0-0.45 (SCE)	2098	<mark>24.95</mark>	$\frac{\text{GS}}{(5 \text{ mA/cm}^2)}$	96 % (1000 cyc)	73 % (30 mA/cm ²)
Co ₃ O ₄ nanosheets				390	2.48		-	57.9% (30 mA/cm ²)
¹⁶⁶ ITO nanowire@ Co(OH) ₂ nanoflake	stainless steel	1 M KOH	-0.15-0.35 (Ag/AgCl)	622	0.20 ^a	CV (5 mV/s)	-	72.3 %
Co(OH) ₂ nanoflake				585	0.22 ^a			33.3 % (CV, 100 mV/s)

¹⁶⁷ Zn ₂ SnO ₄ nanowires@NiCo	stainless steel	2 M KOH	-0.1-0.3	1805	-	GS (0.5 A/g)	-	74.2 %
LDH			(SCE)					(GS 80 A/g)
¹⁶⁸ MnMoO ₄ nanowire@	Ni foam	2 M KOH	-0.6-0.4	204.1	-	GS	98 %	66.0 %
CoMoO ₄ nanowire			(Ag/AgCl)			(0.5 A/g)	(1000 cyc)	(GS, 3 A/g)
				187.1	-	GS		
						(1 A/g)		
MnMoO ₄ nanowire				9.7		GS		
CoMoO ₄ nanowire				62.8		(1 A/g)		
MnMoO ₄ /CoMoO ₄				69.2				
composite					_			
$^{109}NiCo_2S_4$ nanorods	carbon fiber paper	1 M KOH	0-0.5	-	0.52	GS (4	-	76.9 %
$NiCo_2S_4$ nanotubes			(Hg/HgO)		0.87	mA/cm ²)	-	66.7 %
$\operatorname{Co}_{x}\operatorname{Ni}_{1-x}(\operatorname{OH})_{2}/\operatorname{Ni}\operatorname{Co}_{2}\operatorname{S}_{4}$					2.86		96 %	84.3 %
nanotubes					_		(2000 cyc)	(20 mA/cm^2)
^{1/0} CoAl LDH@PEDOT	Ni foil	6 M KOH	-0.1-0.55	672	-	GS (1 A/g)	92.5 %	63.1 %
core/shell nanoplatelets			(Hg/HgO)					
CoAl LDH nanoplatelets				584	-		32 %	29.5 %
171							(5000 cycles)	(CV, 40 A/g)
^{1/1} CoO nanowires	Ni foam	3 M NaOH	-0.2-0.45	1212	1.23	GS (1	99.8 %	$48 \% (10 \text{ mA/cm}^2)$
PPy on CoO nanowires			(Ag/AgCl)	2223	4.43	mA/cm ²)	(2000 cyc)	
$^{1/2}Co_3O_4$ @PPy@MnO ₂ core-	Ni foam	1 M NaOH	-0.2-0.6	627	1.13	GS (1.2	-	-
shell-shell nnaowires			(Hg/HgO)			mA/cm ²)		
Co_3O_4 @PPy core-shell				-	0.58			
nanowires					0.04			
Co ₃ O ₄ nanowires			0.0.5	-	0.36		0500	
^{1/3} N1-Co oxide	Ti foil	I M NaOH	0-0.5	2353	-	GS (2.5 A/g)	95.2 %	92.3 %
nanowires/TiO ₂ nanotubes			(Ag/AgCl)	25.42	0.07		(3000 cyc)	(GS 50 A/g)
$N_{1x}Co_{2x}(OH)_{6x}/TiN$	Ti foil	0.1 M KOH +	-0.05-0.45	2543	0.27	CV (5 mV/s)	93.75 %	65.5 %
nanotubes		1.9 M KCl	(SCE)	2 4 9 9			(5000 cyc)	(CV 100 mV/s)
$N_1(OH)_2/T_1N$ nanotubes				2400	-		-	33.3 %
Co(OH) ₂ /TiN nanotubes				1400	_			571%
175 MoO ₂ thin film/Co(OH) ₂	Ni foam	2 М КОН	-0.2-0.45	1697	-	$GS(2 A/\sigma)$	97 %	39 %
nanoflakes	1 ti iouin	2 11 11011	(SCE)	1077		00 (2119)	(5000 cvc 20)	(40 A/g)
hunonukes			(SCL)				(5000 cyc, 20 A/g)	(10116)
MoO ₂ thin film				_			47 %	28 %
$C_0(OH)_2$ nanoflakes				-			39 %	30 %
176 NiO/Co ₃ O ₄ mesoporous	Ni foam	1 М КОН	0-0.4	992	-	GS(4 A/g)	92.3 %	81 %
nanosheets (Ni:Co=4:1)			(Ag/AgCl)				(5000 evc)	(GS 20 A/g)
NiO/Co ₂ O ₄ mesoporous			(1190			99.1 %	67 %
nanosheets (Ni:Co=3:2)								

NiO mesoporous nanosheets				960			97.5 %	66 %
¹⁷⁷ Mo-decorated Co ₃ O ₄	Ni foam	2 M KOH	0-0.43	2000	4.54	GS (1.7	53 %	46.3 %
nanowires			(SCE)			mA/cm ²)	(2000 cyc)	$(GS 85 \text{ mA/cm}^2)$
Co_3O_4 nanowires				1257	2.11		84 %	5.8 %

Materials	Current collector	Electrolyte	Potential	C _m	Ca	Method	Cycle life	Rate capability
			window (V)	(F /g)	$(\mathbf{F}/\mathbf{cm}^2)$		(cycling no.)	
Composites of cobalt compo	unds-one dimensional	carbon nanomat	erials					
¹⁷⁸ (Ni/Co)O _x -CNTs film	Ni mesh	1 M KOH	0-0.45	1024	1.956 ^a	GS	93.0 %	82 %
			(SCE)			(2 mA/cm^2)	(1000 cyc)	$(GS, 10 \text{ mA/cm}^2)$
¹⁷⁹ Co-Al LDH-MWCNTs	Ni foam	1 M KOH	0-0.5	342.4	3.424 ^a	GS	88.8 % (200)	-
Co-Al LDH			(SCE)	192	1.920 ^a	(2 A/g)	-	-
¹⁸⁰ (Ni/Co)O _x -CNTs film	graphite	1 M KOH	0-0.5	569	0.176 ^a	GS	96.4 %	95.4 %
			(SCE)			(10 mA/cm^2)	(2000 cyc)	$(GS, 100 \text{ mA/cm}^2)$
¹⁸¹ CNTs	alumina	$0.5 \text{ M H}_2\text{SO}_4$	0-1	-	6.3	CV	-	-
Co(OH) ₂ -CNTs	(as support)		(Ag/AgCl)	-	12.74	(100 mV/s)		
¹⁸² CoOOH-CNTs	ITO glass	0.1 M Na ₂ SO ₄	0.1-0.9	389	-	GS	-	-
СоООН	_		(Ag/AgCl)	209		$(10 \ \mu A/cm^2)$		
183 Co ₃ O ₄ -CNTs sheet	-	1 M KOH	0-0.5	302	-	CV	-	~50 %
			(SCE)			(10 mV/s)		(GS, 155 A/g)
¹⁸⁴ NiCo ₂ O ₄ -SWCNTs	Ni foam	2 M KOH	-0.05-0.4	1642	4.926 ^a	GS	94.1 %	53.5 %
			(Ag/AgCl)			(0.5 A/g)	(2000 cyc)	(GS, 20 A/g)
$^{185}(Co/Ni)O_x$	Ni foam	1 M KOH	0-0.5	936	0.721 ^a	CV	-	65.4 %
$(Co/Ni)O_x$ -carbon fibers			(Ag/AgCl)	1271	0.979 ^a	(5 mV/s)		75.1 %
								(CV, 100 mV/s)
186 CoMnO ₂				419	-		-	67.5 %
CoMnO ₂ -carbon fibers				630			95 %	54.3 %
							(10000 cyc)	(CV, 100 mV/s)
¹⁸⁷ Co ₃ O ₄ nanocrystals-1D	(not available)	1 M KOH	0-0.6	382	-	GS	-	81.0 %
nanoporous carbon			(SCE)			(3 A/g)		(GS, 30 A/g)
								72.8 %
								(GS, 60 A/g)
¹⁸⁸ CNF	Ni foam	6 M KOH	-1-0	127	0.381 ^a	GS	-	-
Co(OH) ₂ -CNF			(SCE)	157	0.471^{a}	(1 A/g)		86 %
								(GS, 5 A/g)
Co(OH) ₂			-0.2-0.35	100			-	-
Co(OH) ₂ -CNF			(SCE)	322 *				64.0 %
								(GS, 5 A/g)
				* based	on weight of	Co(OH) ₂ phase		
$^{189}\text{Co}_{3}\text{O}_{4}$	Ni gauze	2 M KOH	-0.2-0.4	263	-	GS	-	59 %
MWCNTs			(SCE)	95		(0.625 A/g)	-	75 %
Co ₃ O ₄ -5%MWCNTs				418			91 %	70 %
							(2000 cyc)	(GS, 6.25 A/g)

Table 7. Summary of electrochemical performance of various <u>cobalt compounds-carbon nanomaterials composites</u>.

¹⁹⁰ CoS _x -FMWCNTs	Ni foam	2 M KOH	-0.3-0.45	334	-	GS	95 %	89.8 %
			(SCE)			(0.4 A/g)	(1000 cyc)	(GS, 3 A/g)
¹⁹¹ CoS-CNTs	FTO substrate	1 M KOH	-	-	-	-	-	-
¹⁹² CoMoO ₄ -MWCNTs	glassy carbon disc	1 M KOH	-0.55-0.25	170	-	GS	93.2 %	56.5 %
			(Hg/HgO)			(0.1 A/g)	(1000 cyc)	(GS, 1 A/g)
¹⁹³ Ni-Co hydroxide-	stainless steel	1M KOH	-0.6-0.4	502	-	CV	83 %	55.0 %
MWCNTs (15 wt %)			(Ag/AgCl)			(5 mV/s)	(5000 cyc)	(CV, 100 mV/s)
¹⁹⁴ NiCo ₂ O ₄ nanorods-carbon	Ni foam	2 M KOH	0-0.45	1023.6	-	GS	91.5 %	48.8 %
nanofibers			(SCE)			(1 A/g)	(2000 cyc)	(GS 20 A/g)
NiCo ₂ O ₄ ultrathin			0.1-0.55	1002	-	GS	96.4 %	51.9 %
nanosheets-carbon nanofibers						(1 A/g)	(2400 cyc)	(GS 20 A/g)
						-	-	-
¹⁹⁵ NiCoAl LDH-MWCNT	Ni foam	6 M KOH	0-0.48	1035	-	GS	83 %	57.7 %
			(Hg/HgO)			(1 A/g)	(1000 cyc)	(GS 10 A/g)
NiCoAl LDH				950		-	78.3	24.4 %
$^{196}C_xNi_{1-x}(OH)_2NSs-HCNA$	carbon fiber paper	1 M KOH	0-0.5		0.88	GS	~88.5 %	59.9 %
$(C_x Ni_{1-x})_9 S_8 NSs-HCNA$			(Hg/HgO)		1.32	(1 mA/cm^2)	~111.2 %	71.8 %
(HCNA: hollow carbon							(3000 cyc)	(10 mA/cm^2)
nanorod array; NS:							-	
nanosheets)								
Composites of cobalt compou	unds-two dimensional	carbon nanoma	aterials					
197 Co(OH) ₂	Ni foam	6 M KOH	-0.2-0.5	726.1	-	GS	-	-
rGO			(SCE)	137.6		(0.5 A/g)		
Co(OH) ₂ -rGO				972.5				
¹⁹⁸ Co(OH) ₂ -vertically aligned	Ni foam	1 M KOH	-0.1-0.45	693.8	-	GS	91.9 %	73.0 %
graphene sheets			(SCE)			(2 A/g)	(3000 cyc)	(GS, 32 A/g)
¹⁹⁹ Co(OH) ₂ -rGO	Ni foam	2 M ROH						
	111104111	2 M KOH	-0.1-0.4	473	-	GS	90 %	63.3 %
200 rGO		2 M KOH	-0.1-0.4 (Ag/AgCl)	473	-	GS (1 A/g)	90 % (1000 cyc)	63.3 % (GS 10 A/g)
100	Ni foam	2 M KOH 6 M KOH	-0.1-0.4 (Ag/AgCl) 0-0.4	473	-	GS (1 A/g) CV	90 % (1000 cyc) 95.6 %	63.3 % (GS 10 A/g)
Co ₃ O ₄ -rGO	Ni foam	6 M KOH	-0.1-0.4 (Ag/AgCl) 0-0.4 (SCE)	473 169.3 243.2	-	GS (1 A/g) CV (10 mV/s)	90 % (1000 cyc) 95.6 % (2000 cyc)	63.3 % (GS 10 A/g) - 71.9 %
Co ₃ O ₄ -rGO	Ni foam	2 M KOH 6 M KOH	-0.1-0.4 (Ag/AgCl) 0-0.4 (SCE)	473 169.3 243.2	-	GS (1 A/g) CV (10 mV/s)	90 % (1000 cyc) 95.6 % (2000 cyc)	63.3 % (GS 10 A/g) - 71.9 % (CV, 100 mV/s)
Co ₃ O ₄ -rGO	Ni foam Pt foil	2 M KOH 6 M KOH 2 M KOH	-0.1-0.4 (Ag/AgCl) 0-0.4 (SCE) -0.25-0.55	473 169.3 243.2 245	-	GS (1 A/g) CV (10 mV/s) CV	90 % (1000 cyc) 95.6 % (2000 cyc)	63.3 % (GS 10 A/g) - 71.9 % (CV, 100 mV/s) -
Co_3O_4 -rGO 201 rGO Co_3O_4	Ni foam Pt foil	2 M KOH 6 M KOH 2 M KOH	-0.1-0.4 (Ag/AgCl) 0-0.4 (SCE) -0.25-0.55 (SCE)	473 169.3 243.2 245 118	-	GS (1 A/g) CV (10 mV/s) CV (5 mV/s)	90 % (1000 cyc) 95.6 % (2000 cyc) -	63.3 % (GS 10 A/g) - 71.9 % (CV, 100 mV/s) -
$ \begin{array}{c} \text{Co}_{3}\text{O}_{4}\text{-}\text{rGO} \\ \hline \begin{array}{c} \text{201}\\ \text{rGO} \\ \text{Co}_{3}\text{O}_{4} \\ \text{Co}_{3}\text{O}_{4}\text{-}\text{rGO} \end{array} $	Ni foam Pt foil	2 M KOH 6 M KOH 2 M KOH	-0.1-0.4 (Ag/AgCl) 0-0.4 (SCE) -0.25-0.55 (SCE)	473 169.3 243.2 245 118 478	-	GS (1 A/g) CV (10 mV/s) CV (5 mV/s)	90 % (1000 cyc) 95.6 % (2000 cyc) -	63.3 % (GS 10 A/g) - 71.9 % (CV, 100 mV/s) -
$ \begin{array}{c} \text{Co}_{3}\text{O}_{4}\text{-}\text{rGO} \\ \end{array} $ $ \begin{array}{c} \text{201} \text{rGO} \\ \text{Co}_{3}\text{O}_{4} \\ \text{Co}_{3}\text{O}_{4}\text{-}\text{rGO} \\ \end{array} $ $ \begin{array}{c} \text{202} \text{Co}_{3}\text{O}_{4} \text{nanoscrolls} \\ \end{array} $	Ni foam Pt foil glassy carbon	2 M KOH 6 M KOH 2 M KOH 6 M KOH	-0.1-0.4 (Ag/AgCl) 0-0.4 (SCE) -0.25-0.55 (SCE) 0-0.5	473 169.3 243.2 245 118 478 14.9	- - - 0.015 ^a	GS (1 A/g) CV (10 mV/s) CV (5 mV/s) CV	90 % (1000 cyc) 95.6 % (2000 cyc) - 91 %	63.3 % (GS 10 A/g) - 71.9 % (CV, 100 mV/s) - 81.9 %
$ \begin{array}{c} \text{Co}_{3}\text{O}_{4}\text{-rGO} \\ \hline \\ \\ \\ $	Ni foam Pt foil glassy carbon electrode	2 M KOH 6 M KOH 2 M KOH 6 M KOH	-0.1-0.4 (Ag/AgCl) 0-0.4 (SCE) -0.25-0.55 (SCE) 0-0.5 (Ag/AgCl)	473 169.3 243.2 245 118 478 14.9 159.8	- - - 0.015 ^a 0.160 ^a	GS (1 A/g) CV (10 mV/s) CV (5 mV/s) CV (5 mV/s)	90 % (1000 cyc) 95.6 % (2000 cyc) - 91 % 93 %	63.3 % (GS 10 A/g) - 71.9 % (CV, 100 mV/s) - 81.9 % 81.8 %
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\$	Ni foam Pt foil glassy carbon electrode	2 M KOH 6 M KOH 2 M KOH 6 M KOH	-0.1-0.4 (Ag/AgCl) 0-0.4 (SCE) -0.25-0.55 (SCE) 0-0.5 (Ag/AgCl)	473 169.3 243.2 245 118 478 14.9 159.8	- - - 0.015 ^a 0.160 ^a	GS (1 A/g) CV (10 mV/s) CV (5 mV/s) CV (5 mV/s)	90 % (1000 cyc) 95.6 % (2000 cyc) - - 91 % 93 % (1000 cyc)	63.3 % (GS 10 A/g) - 71.9 % (CV, 100 mV/s) - 81.9 % 81.8 % (CV, 100 mV/s)
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\$	Ni foam Pt foil glassy carbon electrode Ni foam	2 M KOH 6 M KOH 2 M KOH 6 M KOH	-0.1-0.4 (Ag/AgCl) 0-0.4 (SCE) -0.25-0.55 (SCE) 0-0.5 (Ag/AgCl) -0.4-0.55	473 169.3 243.2 245 118 478 14.9 159.8 56	- - - 0.015 ^a 0.160 ^a 0.168 ^a	GS (1 A/g) CV (10 mV/s) CV (5 mV/s) CV (5 mV/s) GS	90 % (1000 cyc) 95.6 % (2000 cyc) - 91 % 93 % (1000 cyc) -	63.3 % (GS 10 A/g) - 71.9 % (CV, 100 mV/s) - 81.9 % 81.8 % (CV, 100 mV/s) -

C0 ₃ O ₄ -rGO				291	0.873 ^a		90 %	80 %
							(1000 cyc)	(GS, 8 A/g)
$^{204}Co_3O_4$ -rGO	stainless steel	1 M NaOH	-0.2-0.5	687	~0.48 ^a	CV	93.1 %	84.4 %
			(Ag/AgCl)			(5 mV/s)	(1000 cyc)	
$^{205}Co_{3}O_{4}$ -rGO	Ni disk	2 M KOH	0-0.85	472		ĊV	95.6 %	82.6 %
		_	(2-electrode)			(2 mV/s)	(1000 cvc)	(CV. 100 mV/s)
²⁰⁶ Co ₃ O ₄ /carbon core-branch	Ni foam	2 M KOH	0-0.55	700	1.19 ^a	GS	94 %	82.3 %
nanowires			(Hg/HgO)			(2 A/g)	(5000 cyc)	(GS 36 A/g)
$^{207}Co_{3}O_{4}/rGO$	Ni foam	6 M KOH	-0.1-0.45	240	0.53 ^a	CV	95.8 %	-
5 4			(SCE)			(5 mV/s)	(1000 cyc)	
208 CoS ₂ -rGO	Pt foil	6 M KOH	-0.6-0.4	253	-	CV	-	58.5 %
rGO			(SCE)	148		(5 mV/s)		67.6 %
CoS_2			× /	102		× ,		62.7 % (50 mV/s)
209 Co ₃ S ₄ hollow nanospheres-	Ni foam	2 M KOH	0-0.5	675.9	-	GS	90.4 %	77.2 %
rGO			(Hg/HgO)			(0.5 A/g)		
Co_3S_4 hollow nanospheres				522.4	-		54.5 %	66.0 %
							(1000 cyc)	(GS, 5 A/g)
²¹⁰ Co _{0.5} Ni _{0.5} (OH) ₂ nanodiscs-	free standing film	2 M KOH	-0.15-0.40	2360	-	GS	75 %	86 %
rGO-CNT	on Ni mesh		(SCE)			(0.5 A/g)	(5000 cyc)	(GS 20 A/g)
²¹¹ Co-Al LDH nanosheets	Ni foam	1 M KOH	0-0.45	1031	1.031 ^a	GS	~100 %	46.8 %
(NS)-GO			(Ag/AgCl)			(1 A/g)	(6000 cyc)	(GS, 8 A/g)
²¹² Co-Al LDH NS-GO	ITO	1 MKOH	~-0.2-0.5	880	0.007	CV	-	52.4 %
Co-Al LDH NS-rGO			(Ag/AgCl)	1204	0.009	(5 mV/s)	-	48.6 %
								(CV, 100 mV/s)
²¹³ Co _{0.7} -Al _{0.3} LDHs-GO	Ni foam	6 M KOH	0-0.5	1137	-	GS	88 % (500)	-
Co _{0.7} -Al _{0.3} LDHs			(HgO)	560	-	(1 A/g)	-	
²¹⁴ Co-Al LDH-rGO	Ni foam	6 M KOH	0-0.5	711.5	3.558 ^a	GS	81.2 %	72.6 %
			(SCE)			(1 A/g)	(2000 cyc)	(GS, 10 A/g)
²¹⁵ Co-Al LDH (micro)	Ni foam	1 M KOH	0-0.5	466.5	-	GS	-	-
Co-Al LDH (nano)			(SCE)	360.7		(2 A/g)		
rGO/Co-Al LDH (micro)				581.6				
rGO/Co-Al LDH (nano)				484.8				
²¹⁶ CoAl LDH/GO	Ni foam	6 M KOH	-0.1-0.35	772	-	GS	73 %	80 %
			(SCE)			(1 A/g)	(5000 cyc)	(GS 20 A/g)
²¹⁷ NiCo ₂ O ₄ -rGO	Ni foam	6 M KOH	0.1-0.5	835	1.67 ^a	GS	109 %	73.7 %
			(Hg/HgO)			(1 A/g)	(4000 cyc))	(GS 20 A/g)
NiCo ₂ O ₄ -rGO (physical				376	0.752 ^a		-	65.7 %
mixed)								(GS 14 A/g)
NiCo ₂ O ₄				662	1.324 ^a		52 %	52.7 %
							(300 cyc)	(GS 16 A/g)

²¹⁸ NiCo ₂ O ₄ nanocrystals-rGO	Ni foam	2 M KOH	0.05-0.45	1200	-	GS (0.5 A/g)	62.8 %	62.8 %
			(Ag/AgCl)					(GS 40 A/g)
²¹⁹ Ni(OH) ₂ /CoO/rGO	Ni foam	1 M NaOH	-0.05-0.55	1510	-	CV (1 mV/s)	84.8 %	43.0 %
Ni(OH) ₂ /CoO			(Hg/HgO)				63.4 %	(CV 20 mV/s)
Ni(OH) ₂ / rGO							70.2 %	
							(2000 cyc)	
220 Co ₃ O ₄ microsphere arrays-	(PTFE membrane)	3 M KOH	-0.2-0.45	378	-	GS	96 %	78.6 %
rGO/CNTs			(SCE)			(2 A/g)	(3000 cyc)	(GS 8 A/g)
²²¹ NiCo ₂ S ₄ -rGO	Ni foam	2 M KOH	0-0.5	1451	-	GS	95.5 %	52.4 %
			(Ag/AgCl)			(3 A/g)	(2000 cyc)	(GS 20 A/g)
						C C		
Composites of cobalt compou	inds-three dimension	al carbon nanom	aterials	•	•			
²²² Co(OH) ₂ -CMK-3	Ni foam	2 M KOH	-0.2-0.4	750	3.75 ^a	GS	83 %	86 %
			(SCE)			(5 mA/cm^2)	(1000 cyc)	$(GS, 50 \text{ mA/cm}^2)$
²²³ FDU16-800 (OMK)	Mo-sputtered Si	1 M Na ₂ SO ₄	-1 to -0.4	22	-	CV	-	-
Co ₃ O ₄ (10 %)-FDU16			(Hg/Hg_2SO_4)	116		(5 mV/s)		
Co ₃ O ₄ (20 %)-FDU16				125				
²²⁴ MCF	Ni foam	7 M KOH	-0.8-0	97.9	-	CV	-	54.9 %
Co-MCF				102		(5 mV/s)		81.4 %
								(CV 50 mV/s)
²²⁵ NiCo ₂ O ₄ -carbon aerogel	graphite	1 M NaOH	-0.1-0.55	1695	-	CV	97.6 %	~50 %
_			(Ag/AgCl)			(25 mV/s)	(2000 cyc)	(CV 500 mV/s)
²²⁶ Co ₃ O ₄ nanoclusters- SBA-	-Ni foam	6 M KOH	-0.1-0.6	1086	-	CV (10 mV/s)	90 %	36.8 %
15 supported carbon			(Hg/HgO)				(10000 cyc)	(CV 200 mV/s)
nanomembrane								

Table 8. Summary of el	ectrochemical performance of	of cobalt com	pounds synthesized of	on different 3D sup	ports/ current collectors.
24010 01 01 01 01 01	een oenennen periornanee	of the other thanks and the other		on annerene de bap	

Materials	3D support/	Electrolyte	Potential	C _m	Ca	Method	Cycle life	Rate capability
	current collector		window (V)	(F /g)	$(\mathbf{F/cm}^2)$			
22 Co ₃ O ₄	porous Ni film	1 M KOH	0-0.45	2200	-	CV	-	94 %
Co_3O_4	flat Ni foil		(SCE)	209		(10 mV/s)		59 %
								(CV 50 mV/s to 5
								mV/s)
228 Co(OH) ₂	porous Ni film	1 M KOH	-0.2-0.45	2800	0.07 ^a	CV	~100 %	96 %
	flat Ni foil		(SCE)	550	0.014 ^a	(5 mV/s)	75 %	(CV 200 mV/s to
								CV 5 mV/s)
229 Co(OH) ₂	porous Ni film	1 M KOH	-0.2-0.45	1665	0.12 ^a	CV	-	86 %
(Co-Ni mixed hydroxide)			(SCE)			(5 mV/s)		(CV, 200 mV/s)
$^{230}\alpha$ -Co(OH) ₂ nanoflakes	Ni foam	2 M KOH	-0.1-0.6	880	0.88	GS	73.6 %	82.6 %
	porous Ni film		(Hg/HgO)	2028	2	(2 A/g)	94.7 %	95 %
							(2000 cyc)	(GS, 40 A/g)
$^{231}\alpha$ -Co(OH) ₂ nanoflakes	Ni foam	2 M KOH	0-0.4	1017	~1.5 ^a	GS	76.7 %	76.4 %
α-Co(OH) ₂ /Ni nanoflakes			(Hg/HgO)	1310	~2	(1 A/g)	93.7 %	87.6 %
							(2000 cyc)	(GS, 40 A/g)
$^{232}\alpha$ -Co(OH) ₂ nanorods &	Ni coated-Si	2 M KOH	-0.1-0.6	-	1.46	CV	80.6 %	-
nanoflakes	microchannel plates		(SCE)			(10 mV/s)		
²³³ Co(OH) ₂ nanoflakes-	Ni coated-Si	2 M KOH	-0.1-0.4	-	6.90	GS (10	87.4 %	93.8 %
nanoparticles	microchannel plates		(SCE)			mA/cm ²)	(1000 cyc)	$(GS 80 \text{ mA/cm}^2)$
²³⁴ Ni-Co oxides nanowires	TiO ₂ NTs-Ti foil	1 M NaOH	0-0.5	2353	0.941 ^a	GS	95.2 %	92.4 %
			(Ag/AgCl)			(2.5 A/g)	(3000 cyc)	(GS, 50 A/g)
			0-0.5	187	-	GS (1 A/g)	93.7 %	-
			(2-electrode)				(1000 cyc)	
²³⁵ Co ₃ O ₄ nanowire network	carbon fiber paper	2 M KOH	0-0.8	948	0.476 ^a	GS	100 %	94.4 %
²³⁶ NiCo ₂ O ₄ nanowires			(2-electrode)			(0.25 A/g)	(5000 cyc)	(GS, 25.34 A/g)
Co _{0.33} Ni _{0.67} DHs	carbon fiber paper	1 M KOH	-0.25 to 0.55	-	0.41	GS	-	-
nanosheets/NiCo ₂ O ₄			(3-electrode)	>2000	1.88	(10 A/cm^2)	68 %	51.9 %
nanowires							(2000 cyc)	(150 A/cm^2)
Co _{0.5} Ni _{0.5} DHs								
nanosheets/NiCo ₂ O ₄				>2250	2.17		72 %	60.8 %
nanowires							(2000 cyc)	(150 A/cm^2)
Co _{0.67} Ni _{0.33} DHs								
nanosheets/NiCo ₂ O ₄				>1500	1.52		81 %	53.0 %
nanowires							(2000 cyc)	(150 A/cm^2)
²³⁷ Co ₃ O ₄ nanowires	carbon fiber paper	30 wt % KOH	-0.2-0.6	1525	-	GS	-	-
	planar carbon paper		(Ag/AgCl)	1199		(1 A/g)		

	carbon fiber paper							
	planar carbon paper		0-0.8	911	-	GS	94 %	87 %
			(2-electrode)	620		(0.25 A/g)	91 %	71 %
							(5000 cyc)	(GS, 25 A/g)
²³⁸ MnO ₂ nanowires	flexible carbon	1 M LiOH	-0.2-0.6	118	-	GS (1 A/g)	-	10.1
CoAl LDH	fibers		(Hg/HgO)	442			93.4 %	49.8
MnO ₂ nanowires-CoAl LDH				944			98.2 %	64.6
								(GS, 20 A/g)
²³⁹ NiCo ₂ O ₄ nanowires	carbon textiles	6 M KOH	-0.05 to 0.45	1283	-	GS (1 A/g)	~100 %	79 %
			(SCE)				(5000 cyc)	(20 A/g)
²⁴⁰ CoO nanocubes	porous carbon	2 M KOH	0-0.45	1438	-	GS (2 A/g)	82 %	54.8 % (20 A/g)
	skeleton		(SCE)			_	(3000 cyc)	_
241 Co(OH) ²	MWCNTs-cotton	3 M KOH	-0.3-0.45	-	11.22	GS	96 %	68.7 %
	fibers		(SCE)			(15 mA/cm^2)	(2000 cyc)	$(GS, 60 \text{ mA/cm}^2)$
242 Co ₃ O ₄ nanowires	graphene foam	2 M KOH	0-0.5	768	-	GS	100 % ^b	59 %
			(Ag/AgCl)			(10 A/g)	(1000 cyc)	(GS, 30 A/g)
²⁴³ Co(OH) ₂ nanowhiskers	ultra-stable zeolite	2 M KOH	-0.15-0.45	1492	14.92	GS	96 %	-
	Y		(SCE)			(4 mA/cm^2)	(6000 cyc)	
244 Co(OH) ₂ -Ni(OH) ₂	ultra-stable zeolite	1 M KOH	-0.1-0.45	479	4.79	GS	96 %	-
	Y		(SCE)			(2 mA/cm^2)	(600 cyc)	
²⁴⁵ Co(OH) ₂ /SBA-15(10 %)	mesoporous silica	2 M KOH	-0.2-0.4	467.5	-	GS	-	87.2 %
Co(OH) ₂ /SBA-15 (20 %)	SBA-15		(SCE)	417.5		(5 mA/cm^2)		92.3 %
								(GS, 30 mA/cm ₂)

Table 9. <u>Asymmetric ECs and other types of EC devices</u> involved cobalt compounds/ composites.

Positive electrode	Negative	Electrolyte	Potential	C _{m/}	Method	Rate capability	Cycle life	Energy	Power
	electrode		window (V)	(F /g)				density (Wh/kg)	density (W/kg)
$^{22}Co_3O_4/C$ core-shell	activated carbon	2 M KOH	-	-	-	-	92 %	21.5	4500
nanowires							(8000 cyc)		
Co ₃ O ₄ nanowires							88 %	14.7	4500
⁸² Co(OH) ₂ nanorods	GO	1 M KOH	0-1.2	59	GS (6.6 A/g)	-	-	11.9	2540
²⁴⁶ Co(OH) ₂ /USY	activated carbon	1 M KOH	0-1.5	110	GS (2	89.1 %	77 %	30.6	520.8
composite					mA/cm ²)	(25 mA/cm^2)	(500 cyc)		
247 Co(OH) ₂ nanoflakes	activated carbon	2 M KOH	0-1.6	72.4	GS (5	78.5 % (50	93.2 %	72.7	2395.2
					mA/cm ²)	mA/cm^2)	(1000 cyc)		
²⁴⁸ Co _{0.56} Ni _{0.44} oxide	activated carbon	2 M KOH	0-1.6	97	GS (166.7	65.2 % (1666.7	83 %	34.5	133.3
nanoflakes					mA/g)	mA/g)	(1000 cyc)		
²⁴⁹ NiCo ₂ O ₄ -graphene	activated carbon	6 M KOH	0-1.4	288	GS (0.5 A/g)	60 %	~102 %	7.57	5600
250						(30 A/g)	(10000 cyc)		
²⁵⁰ CoAl LDH	activated carbon	6 M KOH	0-1.75	~65	CV (5 mV/s)	~43 %	82 %	25.1	875
CoAl LDH/rGO	activated carbon			~87		~66 %	90 %	35.5	875
117						(80 mV/s)	(6000 cyc)		
¹¹⁶ Ni-Co LDH	rGO	1 M KOH	0-1.6	-	-	-	82 %	188	1499
							(5000 cyc)	141	2797
								105	3927
								78.5	4881
								61.2	5593
210 ~				1.50				21.8	7324
$^{210}Co_{0.5}Ni_{0.5}(OH)_2$	activated carbon-	2 M KOH	0-1.4	150	GS (0.3 A/g)	70.7 %	-	41	210
nanodiscs-rGO-CNT	few-wall CNTs		0.1			(GS 6 A/g)	100.00	29	4200
$^{251}NiCo_2O_4$	$NiCo_2O_4$	PVA-KOH gel	0-1	0.16	GS (1	~86 % (8	100 %	-	-
nanowires-Ni foam	nanowires-Ni foam	(solid)	0.1.0	F/cm ²	mA/cm ²)	mA/cm ²)	(3000 cyc)	27	
¹³⁷ N1-Co sulfide	activated carbon	I M KOH	0-1.8	-	GS (8	-	73.1 %	25	447
nanowires			0.1.6	2.12	mA/cm ²)		(3000 cyc)	17.8	3570
$^{252}Co_9S_8$ nanorods	Co_3O_4 @RuO ₂	3 M KOH	0-1.6	3.42	GS (2.5	-	99.0 %	1.21	13.29
	nanosheet arrays		0.1.6	F/cm ³	mA/cm ²)		(2000 cyc)	mWh/cm ³	W/cm ³
		PVA/KOH gel	0-1.6	4.28			90.2%	1.44	0.89
1480 N' 0/ CO		(solid)	0.1.5	F/cm	$CC(0.5, \Lambda/c)$	$0.00((5 \Lambda/z))$	(2000 cyc)	mwn/cm ⁻	w/cm
C0 _{0.45} IN1 _{0.55} O/rGO	IGO		0-1.5	115	GS (0.5 A/g)	~88% (SA/g)	90 %	35.5	-
167 7			0.1.2	110 /	CVI (5 mVI)	54.4.0/	(1000 cyc)	28.0	3014.0
$2n_2 SnO_4$	activated carbon	2 M KOH	0-1.2	118.4	$\int \nabla v (5 \text{ mv/s})$	54.4% (100 mV/s)	92.7 %	23.7	284.2 5917.2
nanowires@NiCo						(100 mV/s)	(5000 cyc)	9./	3817.2

LDH						40.9 %			
						(200 mV/s)			
¹⁷¹ CoO nanowires	activated carbon	3 M NaOH	0-1.8	~102	GS (1	~70 %(100	91.5 %	43.5	87.5
PPy on CoO					mA/cm ²)	mA/cm^2)	(20000 cyc)	11.8	5500
nanowires									
¹⁷² Co ₃ O ₄ @PPy@MnO	activated carbon	1 M NaOH	0-1.6	-	-	-	~104 %	34.3	80.0
₂ core-shell-shell							(11000 cyc)	5.6	12000
nnaowires							-		
Co ₃ O ₄ @PPy core-									
shell nanowires									
Co ₃ O ₄ nanowires									

References

- 1. D. Wang, Q. Wang and T. Wang, *Inorg. Chem.*, 2011, **50**, 6482-6492.
- 2. G. Godillot, L. Guerlou-Demourgues, P. L. Taberna, P. Simon and C. Delmas, *Electrochem. Solid-St. Lett.*, 2011, 14, A139-A142.
- 3. S. K. Meher and G. R. Rao, J. Phys. Chem. C, 2011, 115, 25543-25556.
- 4. X. Chen, J. P. Cheng, Q. L. Shou, F. Liu and X. B. Zhang, *CrystEngComm*, 2012, 14, 1271-1276.
- 5. J. A. Xu, L. Gao, J. Y. Cao, W. C. Wang and Z. D. Chen, *Electrochim. Acta*, 2010, **56**, 732-736.
- 6. Y. H. Li, K. L. Huang, S. Q. Liu, Z. F. Yao and S. X. Zhuang, J. Solid State Electrochem., 2011, 15, 587-592.
- 7. L. Gong, X. Liu, L. Su and L. Wang, J. Solid State Electrochem., 2011, 16, 297-304.
- 8. M. B. Zheng, J. Cao, S. T. Liao, J. S. Liu, H. Q. Chen, Y. Zhao, W. J. Dai, G. B. Ji, J. M. Cao and J. Tao, J. Phys. Chem. C, 2009, 113, 3887-3894.
- 9. R.-T. Wang, L.-B. Kong, J.-W. Lang, X.-W. Wang, S.-Q. Fan, Y.-C. Luo and L. Kang, J. Power Sources, 2012, 217, 358-363.
- 10. W. Du, R. Liu, Y. Jiang, Q. Lu, Y. Fan and F. Gao, J. Power Sources, 2013, 227, 101-105.
- 11. J. P. Cheng, X. Chen, J.-S. Wu, F. Liu, X. B. Zhang and V. P. Dravid, *CrystEngComm*, 2012, **14**, 6702.
- 12. Y. Wang, Y. Lei, J. Li, L. Gu, H. Yuan and D. Xiao, ACS Appl. Mater. Interfaces, 2014, 6, 6739-6747.
- 13. X. Qing, S. Liu, K. Huang, K. Lv, Y. Yang, Z. Lu, D. Fang and X. Liang, *Electrochim. Acta*, 2011, **56**, 4985-4991.
- 14. C. Yuan, L. Yang, L. Hou, L. Shen, F. Zhang, D. Li and X. Zhang, J. Mater. Chem., 2011, 21, 18183-18185.
- 15. F. Zhang, C. Yuan, X. Lu, L. Zhang, Q. Che and X. Zhang, J. Power Sources, 2012, 203, 250-256.
- 16. X. H. Xia, J. P. Tu, Y. J. Mai, X. L. Wang, C. D. Gu and X. B. Zhao, J. Mater. Chem., 2011, 21, 9319-9325.
- 17. X.-h. Xia, J.-p. Tu, Y.-q. Zhang, Y.-j. Mai, X.-l. Wang, C.-d. Gu and X.-b. Zhao, *RSC Adv.*, 2012, **2**, 1835.
- 18. Q. Yang, Z. Lu, Z. Chang, W. Zhu, J. Sun, J. Liu, X. Sun and X. Duan, *RSC Adv.*, 2012, **2**, 1663-1668.
- 19. B. R. Duan and Q. Cao, *Electrochim. Acta*, 2012, **64**, 154-161.
- 20. J. Huang, J. Zhu, K. Cheng, Y. Xu, D. Cao and G. Wang, *Electrochim. Acta*, 2012, **75**, 273-278.
- 21. Q. Yang, Z. Lu, X. Sun and J. Liu, *Sci. Rep.*, 2013, **3**, 3537.
- 22. G. X. Pan, X. H. Xia, F. Cao, J. Chen, P. S. Tang, Y. J. Zhang and H. F. Chen, *Electrochim. Acta*, 2014, **133**, 522-528.
- 23. S. Xiong, C. Yuan, X. Zhang, B. Xi and Y. Qian, *Chem.-Eur. J.*, 2009, **15**, 5320-5326.
- 24. G. Wang, X. Shen, J. Horvat, B. Wang, H. Liu, D. Wexler and J. Yao, J. Phys. Chem. C, 2009, **113**, 4357-4361.
- 25. L. Cui, J. Li and X. G. Zhang, J. Appl. Electrochem., 2009, **39**, 1871-1876.
- 26. T. Zhu, J. S. Chen and X. W. Lou, J. Mater. Chem., 2010, 20, 7015-7020.
- 27. B. Wang, T. Zhu, H. B. Wu, R. Xu, J. S. Chen and X. W. Lou, *Nanoscale*, 2012, **4**, 2145-2149.
- 28. T. Zhu, Y. Liu, Z. Hu, C. Wang and Z. Wen, Journal of Materials Science: Materials in Electronics, 2011, 22, 1649-1655.
- 29. S. K. Meher and G. R. Rao, J. Phys. Chem. C, 2011, 115, 15646-15654.
- 30. L. Hou, C. Yuan, L. Yang, L. Shen, F. Zhang and X. Zhang, *RSC Adv.*, 2011, **1**, 1521-1526.
- 31. Y. Wang, Z. Zhong, Y. Chen, C. Ng and J. Lin, *Nano Res.*, 2011, 4, 695-704.
- 32. Y. Yu, G. Ji, J. Cao, J. Liu and M. Zheng, J. Alloys Compd., 2009, 471, 268-271.
- 33. G. L. Zhang, D. Zhao, P. Z. Guo, Z. B. Wei and X. S. Zhao, Acta Phys.-Chim. Sin., 2012, 28, 387-392.
- 34. Y. Xiao, S. Liu, F. Li, A. Zhang, J. Zhao, S. Fang and D. Jia, *Adv. Funct. Mater.*, 2012, **22**, 4052-4059.
- 35. Y. Xiao, A. Zhang, S. Liu, J. Zhao, S. Fang, D. Jia and F. Li, J. Power Sources, 2012, 219, 140-146.
- 36. C. Lin, J. A. Ritter and B. N. Popov, *J. Electrochem. Soc.*, 1998, **145**, 4097-4103.
- 37. T.-Y. Wei, C.-H. Chen, K.-H. Chang, S.-Y. Lu and C.-C. Hu, *Chem. Mater.*, 2009, **21**, 3228-3233.

- 38. X. Wang, A. Sumboja, E. Khoo, C. Yan and P. S. Lee, *J. Phys. Chem. C*, 2012, **116**, 4930-4935.
- 39. Y. Gao, S. Chen, D. Cao, G. Wang and J. Yin, J. Power Sources, 2010, 195, 1757-1760.
- 40. H. Cheng, Z. G. Lu, J. Q. Deng, C. Y. Chung, K. L. Zhang and Y. Y. Li, *Nano Res.*, 2010, **3**, 895-901.
- 41. S. G. Kandalkar, D. S. Dhawale, C. K. Kim and C. D. Lokhande, *Synth. Met.*, 2010, **160**, 1299-1302.
- 42. Y. Li, K. Huang, Z. Yao, S. Liu and X. Qing, *Electrochim. Acta*, 2011, **56**, 2140-2144.
- 43. H. Wang, L. Zhang, X. Tan, C. M. B. Holt, B. Zahiri, B. C. Olsen and D. Mitlin, J. Phys. Chem. C, 2011, 115, 17599-17605.
- 44. V. Srinivasan and J. W. Weidner, J. Electrochem. Soc., 1997, 144, L210-L213.
- 45. V. Srinivasan and J. W. Weidner, J. Power Sources, 2002, 108, 15-20.
- 46. J.-K. Lee, G.-P. Kim, K.-H. Kim, I. K. Song and S.-H. Baeck, *J. Nanosci. Nanotechno.*, **10**, 3676-3679.
- 47. J. B. Wu, Y. Lin, X. H. Xia, J. Y. Xu and Q. Y. Shi, *Electrochim. Acta*, 2011, **56**, 7163-7170.
- 48. M. Aghazadeh, J. Appl. Electrochem., 2012, **42**, 89-94.
- 49. X.-H. Xia, J.-P. Tu, X.-L. Wang, C.-D. Gu and X.-B. Zhao, *Chem. Commun.*, 2011, **47**, 5786-5788.
- 50. Y. F. Yuan, X. H. Xia, J. B. Wu, X. H. Huang, Y. B. Pei, J. L. Yang and S. Y. Guo, *Electrochem. Commun.*, 2011, **13**, 1123-1126.
- 51. C. Yuan, L. Yang, L. Hou, L. Shen, X. Zhang and X. W. Lou, *Energy Environ. Sci.*, 2012, **5**, 7883-7887.
- 52. V. R. Shinde, S. B. Mahadik, T. P. Gujar and C. D. Lokhande, *Appl. Surf. Sci.*, 2006, **252**, 7487-7492.
- 53. R. Tummala, R. K. Guduru and P. S. Mohanty, J. Power Sources, 2012, 209, 44-51.
- 54. F. Zhang, L. Hao, L. J. Zhang and X. G. Zhang, Int. J. Electrochem. Sc., 2011, 6, 2943-2954.
- 55. C. Yuan, X. Zhang, B. Gao and J. Li, *Mater. Chem. Phys.*, 2007, **101**, 148-152.
- 56. C. Yuan, L. Hou, L. Shen, D. Li, F. Zhang, C. Fan, J. Li and X. Zhang, *Electrochim. Acta*, 2010, 56, 115-121.
- 57. Z. Hu, L. Mo, X. Feng, J. Shi, Y. Wang and Y. Me, *Mater. Chem. Phys.*, 2009, **114**, 53-57.
- 58. Z.-A. Hu, Y.-L. Xie, Y.-X. Wang, L.-J. Xie, G.-R. Fu, X.-Q. Jin, Z.-Y. Zhang, Y.-Y. Yang and H.-Y. Wu, J. Phys. Chem. C, 2009, 113, 12502-12508.
- 59. L.-B. Kong, J.-W. Lang, M. Liu, Y.-C. Luo and L. Kang, *J. Power Sources*, 2009, **194**, 1194-1201.
- 60. C. Xu, J. Sun and L. Gao, *CrystEngComm*, 2011, **13**, 1586.
- 61. Y. K. Kim, S. I. Cha and S. H. Hong, J. Mater. Chem. A, 2013, 1, 9802-9808.
- 62. S. Tang, S. Vongehr, Y. Wang, L. Chen and X. Meng, J. Solid State Chem., 2010, **183**, 2166-2173.
- 63. C. Yuan, X. Zhang, L. Hou, L. Shen, D. Li, F. Zhang, C. Fan and J. Li, J. Mater. Chem., 2010, 20, 10809-10816.
- 64. C. Z. Yuan, L. Yang, L. R. Hou, D. K. Li, L. F. Shen, F. Zhang and X. G. Zhang, J. Solid State Electrochem., 2012, 16, 1519-1525.
- 65. L. Hou, C. Yuan, L. Yang, L. Shen, F. Zhang and X. Zhang, *CrystEngComm*, 2011, **13**, 6130-6135.
- 66. J. Jiang, J. Liu, R. Ding, J. Zhu, Y. Li, A. Hu, X. Li and X. Huang, ACS Appl. Mater. Interfaces, 2010, **3**, 99-103.
- 67. F. Cao, G. X. Pan, P. S. Tang and H. F. Chen, J. Power Sources, 2012, **216**, 395-399.
- 68. V. Gupta, T. Kusahara, H. Toyama, S. Gupta and N. Miura, *Electrochem. Commun.*, 2007, 9, 2315-2319.
- 69. W.-J. Zhou, J. Zhang, T. Xue, D.-D. Zhao and H.-l. Li, J. Mater. Chem., 2008, **18**, 905-910.
- 70. W.-J. Zhou, D.-D. Zhao, M.-W. Xu, C.-L. Xu and H.-L. Li, *Electrochim. Acta*, 2008, **53**, 7210-7219.
- 71. W. J. Zhou, M. W. Xu, D. D. Zhao, C. L. Xu and L. Li, *Microporous Mesoporous Mater.*, 2009, **117**, 55-60.
- 72. Y.-L. Wang, Y.-Q. Zhao and C.-L. Xu, J. Solid State Electrochem., 2011, 16, 829-834.
- 73. P. K. Nayak and N. Munichandraiah, J. Electrochem. Soc., 2008, **155**, A855-A861.
- 74. S. L. Chou, J. Z. Wang, H. K. Liu and S. X. Dou, J. Electrochem. Soc., 2008, 155, A926-A929.
- 75. Z. J. Yu, Y. Dai and W. Chen, J. Chin. Chem. Soc., 2010, **57**, 423-428.
- 76. T. Zhao, H. Jiang and J. Ma, J. Power Sources, 2011, **196**, 860-864.

- 77. L.-B. Kong, M.-C. Liu, J.-W. Lang, M. Liu, Y.-C. Luo and L. Kang, J. Solid State Electrochem., 2010, **15**, 571-577.
- 78. Y. Asano, T. Komatsu, K. Murashiro and K. Hoshino, J. Power Sources, 2011, **196**, 5215-5222.
- 79. T. Xue, X. Wang and J.-M. Lee, J. Power Sources, 2012, 201, 382-386.
- 80. E. Hosono, S. Fujihara, I. Honma, M. Ichihara and H. S. Zhou, J. Power Sources, 2006, 158, 779-783.
- 81. A. D. Jagadale, D. P. Dubal and C. D. Lokhande, *Mater. Res. Bull.*, 2012, **47**, 672-676.
- 82. R. R. Salunkhe, B. P. Bastakoti, C.-T. Hsu, N. Suzuki, J. H. Kim, S. X. Dou, C.-C. Hu and Y. Yamauchi, Chem.-Eur. J., 2014, 20, 3084-3088.
- 83. F. Tao, Y. Q. Zhao, G. Q. Zhang and H. L. Li, *Electrochem. Commun.*, 2007, 9, 1282-1287.
- 84. S.-J. Bao, C. M. Li, C.-X. Guo and Y. Qiao, J. Power Sources, 2008, 180, 676-681.
- 85. C. Yuan, B. Gao, L. Su, L. Chen and X. Zhang, J. Electrochem. Soc., 2009, 156, A199.
- 86. P. Justin and G. Ranga Rao, Int. J. Hydrogen Energy, 2010, **35**, 9709-9715.
- 87. W. Dong, X. Wang, B. Li, L. Wang, B. Chen, C. Li, X. Li, T. Zhang and Z. Shi, *Dalton T.*, 2011, 40, 243-248.
- 88. B. Liu, S. Wei, Y. Xing, D. Liu, Z. Shi, X. Liu, X. Sun, S. Hou and Z. Su, *Chemistry*, 2010, **16**, 6625-6631.
- 89. Z. Yang, C.-Y. Chen and H.-T. Chang, *J. Power Sources*, 2011, **196**, 7874-7877.
- 90. Q. Wang, L. Jiao, H. Du, J. Yang, Q. Huan, W. Peng, Y. Si, Y. Wang and H. Yuan, *CrystEngComm*, 2011, 13, 6960.
- 91. L. Zhang, H. B. Wu and X. W. Lou, *Chem. Commun.*, 2012, **48**, 6912-6914.
- 92. J.-Y. Lin and S.-W. Chou, *RSC Adv.*, 2013, **3**, 2043.
- 93. D. Y. Lee, S. J. Yoon, N. K. Shrestha, S. H. Lee, H. Ahn and S. H. Han, *Microporous Mesoporous Mater.*, 2012, **153**, 163-165.
- 94. X. Petrissans, A. Betard, D. Giaume, P. Barboux, B. Dunn, L. Sicard and J. Y. Piquemal, *Electrochim. Acta*, 2012, **66**, 306-312.
- 95. Z. Lu, W. Zhu, X. Lei, G. R. Williams, D. O'Hare, Z. Chang, X. Sun and X. Duan, Nanoscale, 2012, 4, 3640-3643.
- 96. H. Pang, Z. Yan, W. Wang, J. Chen, J. Zhang and H. Zheng, *Nanoscale*, 2012, **4**, 5946-5953.
- 97. H. Pang, Y. Liu, J. Li, Y. Ma, G. Li, Y. Ai, J. Chen, J. Zhang and H. Zheng, *Nanoscale*, 2013, **5**, 503-507.
- 98. X.-M. Liu, Y.-H. Zhang, X.-G. Zhang and S.-Y. Fu, *Electrochim. Acta*, 2004, **49**, 3137-3141.
- 99. H. KuanXin, Z. Xiaogang and L. Juan, *Electrochim. Acta*, 2006, **51**, 1289-1292.
- 100. L.-H. Su and X.-G. Zhang, J. Power Sources, 2007, **172**, 999-1006.
- 101. L.-H. Su, X.-G. Zhang, C.-H. Mi and Y. Liu, J. Power Sources, 2008, 179, 388-394.
- 102. L. H. Su, X. G. Zhang, C. H. Mi, B. Gao and Y. Liu, *Phys. Chem. Chem. Phys.*, 2009, **11**, 2195-2202.
- 103. J. W. Jiang, X. G. Zhang, L. H. Su, L. J. Zhang and F. Zhang, *Chinese Journal of Inorganic Chemistry*, 2010, 26, 1623-1628.
- 104. Y. Wang, W. Yang, S. Zhang, D. G. Evans and X. Duan, J. Electrochem. Soc., 2005, 152, A2130-A2137.
- 105. Y. Wang, W. Yang and J. Yang, *Electrochem. Solid-St. Lett.*, 2007, **10**, A233.
- 106. Y. Wang, W. Yang, C. Chen and D. G. Evans, J. Power Sources, 2008, 184, 682-690.
- 107. V. Gupta, S. Gupta and N. Miura, J. Power Sources, 2008, 175, 680-685.
- 108. V. Gupta, S. Gupta and N. Miura, J. Power Sources, 2008, 177, 685-689.
- 109. V. Gupta, S. Gupta and N. Miura, J. Power Sources, 2009, 189, 1292-1295.
- 110. Z.-A. Hu, Y.-L. Xie, Y.-X. Wang, H.-Y. Wu, Y.-Y. Yang and Z.-Y. Zhang, *Electrochim. Acta*, 2009, **54**, 2737-2741.
- 111. M. A. Woo, M.-S. Song, T. W. Kim, I. Y. Kim, J.-Y. Ju, Y. S. Lee, S. J. Kim, J.-H. Choy and S.-J. Hwang, J. Mater. Chem., 2011, 21, 4286.
- 112. X. Liu, R. Ma, Y. Bando and T. Sasaki, *Adv. Mater.*, 2012, **24**, 2148-2153.
- 113. W. Zhu, Z. Lu, G. Zhang, X. Lei, Z. Chang, J. Liu and X. Sun, J. Mater. Chem. A, 2013, 1, 8327-8331.
- 114. K. Tadanaga, A. Miyata, D. Ando, N. Yamaguchi and M. Tatsumisago, J. Sol-Gel Sci. Technol., 2012, 62, 111-116.
- 115. P. Vialat, C. Mousty, C. Taviot-Gueho, G. Renaudin, H. Martinez, J.-C. Dupin, E. Elkaim and F. Leroux, *Adv. Funct. Mater.*, 2014, n/a-n/a.

- 116. H. Chen, L. Hu, M. Chen, Y. Yan and L. Wu, *Adv. Funct. Mater.*, 2014, **24**, 934-942.
- 117. C.-C. Hu and C.-Y. Cheng, *Electrochem. Solid-St. Lett.*, 2002, 5, A43-A46.
- 118. Y. Tao, L. Zaijun, L. Ruiyi, N. Qi, K. Hui, N. Yulian and L. Junkang, J. Mater. Chem., 2012, 22, 23587-23592.
- 119. J.-H. Zhong, A.-L. Wang, G.-R. Li, J.-W. Wang, Y.-N. Ou and Y.-X. Tong, J. Mater. Chem., 2012, 22, 5656.
- 120. V. Gupta, T. Kawaguchi and N. Miura, *Mater. Res. Bull.*, 2009, 44, 202-206.
- 121. T. Y. Wei, C. H. Chen, H. C. Chien, S. Y. Lu and C. C. Hu, Adv. Mater., 2010, 22, 347-351.
- 122. G. Hu, C. Tang, C. Li, H. Li, Y. Wang and H. Gong, J. Electrochem. Soc., 2011, 158, A695-A699.
- 123. Y. Q. Wu, X. Y. Chen, P. T. Ji and Q. Q. Zhou, *Electrochim. Acta*, 2011, 56, 7517-7522.
- 124. J.-J. Deng, J.-C. Deng, Z.-L. Liu, H.-R. Deng and B. Liu, J. Mater. Sci., 2009, 44, 2828-2835.
- 125. J. Chang, J. Sun, C. Xu, H. Xu and L. Gao, Nanoscale, 2012, 4, 6786-6791.
- 126. J.-W. Lang, L.-B. Kong, M. Liu, Y.-C. Luo and L. Kang, J. Electrochem. Soc., 2010, 157, A1341.
- 127. C. Wang, X. Zhang, D. Zhang, C. Yao and Y. Ma, *Electrochim. Acta*, 2012, **63**, 220-227.
- 128. H. Jiang, J. Ma and C. Li, *Chem. Commun.*, 2012, **48**, 4465-4467.
- 129. H. Wang, Q. Gao and L. Jiang, *Small*, 2011, **7**, 2454-2459.
- 130. J. Xiao and S. Yang, *RSC Adv.*, 2011, **1**, 588-595.
- 131. L. Su, L. Gong and J. Gao, J. Power Sources, 2012, 209, 141-146.
- 132. R. R. Salunkhe, K. Jang, H. Yu, S. Yu, T. Ganesh, S.-H. Han and H. Ahn, J. Alloys Compd., 2011, 509, 6677-6682.
- 133. R. R. Salunkhe, K. Jang, S.-w. Lee and H. Ahn, *RSC Adv.*, 2012, **2**, 3190-3193.
- 134. D. P. Dubal, A. D. Jagadale, S. V. Patil and C. D. Lokhande, *Mater. Res. Bull.*, 2012, **47**, 1239-1245.
- 135. C. Yuan, J. Li, L. Hou, L. Yang, L. Shen and X. Zhang, J. Mater. Chem., 2012, **22**, 16084-16090.
- 136. X. Lu, X. Huang, S. Xie, T. Zhai, C. Wang, P. Zhang, M. Yu, W. Li, C. Liang and Y. Tong, J. Mater. Chem., 2012, 22, 13357-13364.
- 137. J. Li, M. Yang, J. Wei and Z. Zhou, *Nanoscale*, 2012, **4**, 4498-4503.
- 138. G. Wang, L. Zhang, J. Kim and J. Zhang, *J. Power Sources*, 2012, **217**, 554-561.
- 139. M.-C. Liu, L.-B. Kong, C. Lu, X.-M. Li, Y.-C. Luo and L. Kang, ACS Appl. Mater. Interfaces, 2012, 4, 4631-4636.
- 140. G. Zhang and X. W. Lou, *Adv. Mater.*, 2012, n/a-n/a.
- 141. L. Li, S. Peng, Y. Cheah, P. Teh, J. Wang, G. Wee, Y. Ko, C. Wong and M. Srinivasan, *Chem.-Eur. J.*, 2013, **19**, 5892-5898.
- 142. C. Yuan, J. Li, L. Hou, X. Zhang, L. Shen and X. W. Lou, Adv. Funct. Mater., 2012, 22, 4592-4597.
- 143. G. Q. Zhang, H. B. Wu, H. E. Hoster, M. B. Chan-Park and X. W. Lou, *Energy Environ. Sci.*, 2012, **5**, 9453-9456.
- 144. R. Zou, K. Xu, T. Wang, G. He, Q. Liu, X. Liu, Z. Zhang and J. Hu, J. Mater. Chem. A, 2013, 1, 8560-8566.
- 145. Q. Wang, B. Liu, X. Wang, S. Ran, L. Wang, D. Chen and G. Shen, J. Mater. Chem., 2012, 22, 21647-21653.
- 146. D. Cai, S. Xiao, D. Wang, B. Liu, L. Wang, Y. Liu, H. Li, Y. Wang, Q. Li and T. Wang, *Electrochim. Acta*, 2014.
- 147. G. Zhang and X. W. Lou, *Adv Mater*, 2013, **25**, 976-979.
- 148. J. Xiao and S. Yang, J. Mater. Chem., 2012, 22, 12253-12262.
- 149. K. Karthikeyan, D. Kalpana and N. Renganathan, *Ionics*, 2009, **15**, 107-110.
- 150. M. Davis, C. Gümeci, B. Black, C. Korzeniewski and L. Hope-Weeks, RSC Adv., 2012, 2, 2061.
- 151. J.-M. Luo, B. Gao and X.-G. Zhang, *Mater. Res. Bull.*, 2008, 43, 1119-1125.
- 152. P. Xu, K. Ye, D. Cao, J. Huang, T. Liu, K. Cheng, J. Yin and G. Wang, J. Power Sources, 2014, 268, 204-211.
- 153. J. Pu, F. L. Cui, S. B. Chu, T. L. Wang, E. H. Sheng and Z. H. Wang, ACS Sustainable Chem. Eng., 2014, 2, 809-815.
- 154. H. Z. Wan, J. J. Jiang, J. W. Yu, K. Xu, L. Miao, L. Zhang, H. C. Chen and Y. J. Ruan, *CrystEngComm*, 2013, **15**, 7649-7651.

- 155. H. C. Chen, J. J. Jiang, L. Zhang, D. D. Xia, Y. D. Zhao, D. Q. Guo, T. Qi and H. Z. Wan, J. Power Sources, 2014, 254, 249-257.
- 156. W. Du, Z. Zhu, Y. Wang, J. Liu, W. Yang, X. Qian and H. Pang, *RSC Adv.*, 2014, **4**, 6998-7002.
- 157. Y. Li, L. Cao, L. Qiao, M. Zhou, Y. Yang, P. Xiao and Y. Zhang, J. Mater. Chem. A, 2014, 2, 6540-6548.
- 158. J. Pu, T. Wang, H. Wang, Y. Tong, C. Lu, W. Kong and Z. Wang, ChemPlusChem, 2014, 79, 577-583.
- 159. H. Chen, J. Jiang, L. Zhang, H. Wan, T. Qi and D. Xia, *Nanoscale*, 2013, **5**, 8879-8883.
- 160. J. Liu, J. Jiang, C. Cheng, H. Li, J. Zhang, H. Gong and H. J. Fan, *Adv. Mater.*, 2011, **23**, 2076-2081.
- 161. C. Guan, J. Liu, C. Cheng, H. Li, X. Li, W. Zhou, H. Zhang and H. J. Fan, Energy Environ. Sci., 2011, 4, 4496-4499.
- 162. X. Xia, J. Tu, Y. Zhang, X. Wang, C. Gu, X.-B. Zhao and H. J. Fan, ACS Nano, 2012.
- 163. C. Guan, X. Li, Z. Wang, X. Cao, C. Soci, H. Zhang and H. J. Fan, *Adv. Mater.*, 2012, **24**, 4186-4190.
- 164. X. Xia, J. Tu, Y. Zhang, J. Chen, X. Wang, C. Gu, C. Guan, J. Luo and H. J. Fan, *Chem. Mater.*, 2012, 24, 3793-3799.
- 165. Z. Y. Lu, Q. Yang, W. Zhu, Z. Chang, J. F. Liu, X. M. Sun, D. G. Evans and X. Duan, Nano Res., 2012, 5, 369-378.
- 166. C. Yan, H. Jiang, T. Zhao, C. Li, J. Ma and P. S. Lee, *J. Mater. Chem.*, 2011, **21**, 10482.
- 167. X. Wang, A. Sumboja, M. Lin, J. Yan and P. S. Lee, *Nanoscale*, 2012, **4**, 7266-7272.
- 168. L.-Q. Mai, F. Yang, Y.-L. Zhao, X. Xu, L. Xu and Y.-Z. Luo, *Nat. Commun.*, 2011, **2**, 381.
- 169. J. Xiao, L. Wan, S. Yang, F. Xiao and S. Wang, *Nano Lett.*, 2014, 14, 831-838.
- 170. J. Han, Y. Dou, J. Zhao, M. Wei, D. G. Evans and X. Duan, *Small*, 2013, **9**, 98-106.
- 171. C. Zhou, Y. Zhang, Y. Li and J. Liu, *Nano Lett.*, 2013, **13**, 2078-2085.
- 172. L. Han, P. Tang and L. Zhang, *Nano Energy*, 2014, **7**, 42-51.
- 173. F. Yang, J. Yao, F. Liu, H. He, M. Zhou, P. Xiao and Y. Zhang, J. Mater. Chem. A, 2013, 1, 594.
- 174. C. Shang, S. Dong, S. Wang, D. Xiao, P. Han, X. Wang, L. Gu and G. Cui, ACS Nano, 2013, 7, 5430-5436.
- 175. K. M. Hercule, Q. Wei, A. M. Khan, Y. Zhao, X. Tian and L. Mai, *Nano Lett.*, 2013, **13**, 5685-5691.
- 176. K. Xu, R. Zou, W. Li, Y. Xue, G. Song, Q. Liu, X. Liu and J. Hu, J. Mater. Chem. A, 2013, 1, 9107-9113.
- 177. H. Zhang, Y. Chen, W. Wang, G. Zhang, M. Zhuo, H. Zhang, T. Yang, Q. Li and T. Wang, J. Mater. Chem. A, 2013, 1, 8593-8600.
- 178. H. Kuan-Xin, W. Quan-Fu, Z. Xiao-gang and W. Xin-Lei, J. Electrochem. Soc., 2006, **153**, A1568.
- 179. L.-H. Su, X.-G. Zhang and Y. Liu, J. Solid State Electrochem., 2007, **12**, 1129-1134.
- 180. Z. Fan, J. Chen, K. Cui, F. Sun, Y. Xu and Y. Kuang, *Electrochim. Acta*, 2007, **52**, 2959-2965.
- 181. H.-J. Ahn, W. B. Kim and T.-Y. Seong, *Electrochemistry Communications*, 2008, **10**, 1284-1287.
- 182. H. Zheng, F. Tang, M. Lim, T. Rufford, A. Mukherji, L. Wang and G. Lu, *J. Power Sources*, 2009, **193**, 930-934.
- 183. R. Zhou, C. Meng, F. Zhu, Q. Li, C. Liu, S. Fan and K. Jiang, *Nanotechnology*, 2010, 21, 345701.
- 184. X. Wang, X. Han, M. Lim, N. Singh, C. L. Gan, M. Jan and P. S. Lee, J. Phys. Chem. C, 2012, 116, 12448-12454.
- 185. Y. I. Yoon, Ko, J.M., Int. J. Electrochem. Sc., 2008, **3**, 1340-1347.
- 186. S. H. Klm, Kim, Y.I., Park, J.H., Ko, J.M., *Int. J. Electrochem. Sc.*, 2009, **4**, 1489-1496.
- 187. Y. Y. Liang, M. G. Schwab, L. J. Zhi, E. Mugnaioli, U. Kolb, X. L. Feng and K. Mullen, J. Am. Chem. Soc., 2010, **132**, 15030-15037.
- 188. Z. Tai, J. Lang, X. Yan and Q. Xue, J. Electrochem. Soc., 2012, 159, A485.
- 189. J. Lang, X. Yan and Q. Xue, J. Power Sources, 2011, **196**, 7841-7846.
- 190. C. Yuan, L. Shen, F. Zhang, X. Lu, D. Li and X. Zhang, J. Colloid Interface Sci., 2010, **349**, 181-185.
- 191. C.-Y. Chen, Z.-Y. Shih, Z. Yang and H.-T. Chang, J. Power Sources, 2012, 215, 43-47.
- 192. Z. Xu, Z. Li, X. Tan, C. M. B. Holt, L. Zhang, B. S. Amirkhiz and D. Mitlin, *RSC Adv.*, 2012, **2**, 2753-2755.
- 193. R. R. Salunkhe, K. Jang, S.-w. Lee, S. Yu and H. Ahn, J. Mater. Chem., 2012, 22, 21630-21635.

- 194. G. Zhang and X. W. Lou, *Sci. Rep.*, 2013, **3**, 1470.
- 195. J. Yang, C. Yu, X. Fan, Z. Ling, J. Qiu and Y. Gogotsi, J. Mater. Chem. A, 2013, 1, 1963-1968.
- 196. L. Wan, J. Xiao, F. Xiao and S. Wang, ACS Appl. Mater. Interfaces, 2014, 6, 7735-7742.
- 197. S. Chen, J. Zhu and X. Wang, J. Phys. Chem. C, 2010, 114, 11829-11834.
- 198. C. Zhao, X. Wang, S. Wang, Y. Wang, Y. Zhao and W. Zheng, *Int. J. Hydrogen Energy*, 2012, **37**, 11846-11852.
- 199. Z. Li, J. Wang, L. Niu, J. Sun, P. Gong, W. Hong, L. Ma and S. Yang, *J. Power Sources*, 2014, **245**, 224-231.
- 200. J. Yan, T. Wei, W. Qiao, B. Shao, Q. Zhao, L. Zhang and Z. Fan, *Electrochim. Acta*, 2010, **55**, 6973-6978.
- 201. B. Wang, Y. Wang, J. Park, H. Ahn and G. Wang, J. Alloys Compd., 2011, 509, 7778-7783.
- 202. W. Zhou, J. Liu, T. Chen, K. S. Tan, X. Jia, Z. Luo, C. Cong, H. Yang, C. M. Li and T. Yu, Phys. Chem. Chem. Phys., 2011, 13, 14462-14465.
- 203. H.-W. Wang, Z.-A. Hu, Y.-Q. Chang, Y.-L. Chen, Z.-Y. Zhang, Y.-Y. Yang and H.-Y. Wu, Mater. Chem. Phys., 2011, 130, 672-679.
- 204. A. Chidembo, S. H. Aboutalebi, K. Konstantinov, M. Salari, B. Winton, S. A. Yamini, I. P. Nevirkovets and H. K. Liu, *Energy Environ. Sci.*, 2012, 5, 5236.
- 205. C. Xiang, M. Li, M. Zhi, A. Manivannan and N. Wu, *J. Power Sources*, 2013, **226**, 65-70.
- 206. R. Zhang, J. Liu, H. Guo and X. Tong, *Mater. Lett.*, 2014, **134**, 190-193.
- 207. W. Zhang, F. Liu, Q. Li, Q. Shou, J. Cheng, L. Zhang, B. J. Nelson and X. Zhang, *Phys. Chem. Chem. Phys.*, 2012, 14, 16331-16337.
- 208. B. Wang, J. Park, D. Su, C. Wang, H. Ahn and G. Wang, J. Mater. Chem., 2012, 22, 15750-15756.
- 209. Q. Wang, L. Jiao, H. Du, Y. Si, Y. Wang and H. Yuan, J. Mater. Chem., 2012, 22, 21387-21391.
- 210. Y. Cheng, H. Zhang, C. V. Varanasi and J. Liu, *Energy Environ. Sci.*, 2013, **6**, 3314-3321.
- 211. L. Wang, D. Wang, X. Y. Dong, Z. J. Zhang, X. F. Pei, X. J. Chen, B. Chen and J. Jin, *Chem. Commun.*, 2011, 47, 3556-3558.
- 212. X. Dong, L. Wang, D. Wang, C. Li and J. Jin, *Langmuir*, 2011, **28**, 293-298.
- 213. Y. L. Chen, Z. A. Hu, Y. Q. Chang, H. W. Wang, G. R. Fu, X. Q. Jin and L. J. Xie, Chin. J. Chem . 2011, 29, 2257-2262.
- 214. L. Zhang, X. Zhang, L. Shen, B. Gao, L. Hao, X. Lu, F. Zhang, B. Ding and C. Yuan, J. Power Sources, 2012, 199, 395-401.
- 215. S. Huang, G.-N. Zhu, C. Zhang, W. W. Tjiu, Y.-Y. Xia and T. Liu, ACS Appl. Mater. Interfaces, 2012.
- 216. J. Fang, M. Li, Q. Li, W. Zhang, Q. Shou, F. Liu, X. Zhang and J. Cheng, *Electrochim. Acta*, 2012, 85, 248-255.
- 217. H.-W. Wang, Z.-A. Hu, Y.-Q. Chang, Y.-L. Chen, H.-Y. Wu, Z.-Y. Zhang and Y.-Y. Yang, J. Mater. Chem., 2011, **21**, 10504-10511.
- 218. X. Wang, W. S. Liu, X. Lu and P. S. Lee, J. Mater. Chem., 2012, 22, 23114-23119.
- 219. L. Jiang, R. Zou, W. Li, J. Sun, X. Hu, Y. Xue, G. He and J. Hu, J. Mater. Chem. A, 2013, 1, 478.
- 220. C. Yuan, L. Yang, L. Hou, J. Li, Y. Sun, X. Zhang, L. Shen, X. Lu, S. Xiong and X. W. Lou, Adv. Funct. Mater., 2012, 22, 2560-2566.
- 221. S. Peng, L. Li, C. Li, H. Tan, R. Cai, H. Yu, S. Mhaisalkar, M. Srinivasan, S. Ramakrishna and Q. Yan, Chem. Commun., 2013, 49, 10178-10180.
- 222. J. Zhang, L.-B. Kong, J.-J. Cai, Y.-C. Luo and L. Kang, J. Solid State Electrochem., 2010, 14, 2065-2075.
- 223. M. Dai, L. Song, J. T. LaBelle and B. D. Vogt, *Chem. Mater.*, 2011, **23**, 2869-2878.
- 224. Y.-K. Lv, Y.-L. Feng, L.-H. Gan, M.-X. Liu, L. Xu, C. Liu, H.-W. Zheng and J. Li, J. Solid State Chem., 2012, 185, 198-205.
- 225. H.-C. Chien, W.-Y. Cheng, Y.-H. Wang and S.-Y. Lu, Adv. Funct. Mater., 2012, n/a-n/a.
- 226. J. Zhi, S. Deng, Y. Zhang, Y. Wang and A. Hu, J. Mater. Chem. A, 2013, 1, 3171-3176.
- 227. D. Ming-Jay, H. Fu-Lu, I. W. Sun, T. Wen-Ta and C. Jeng-Kuei, *Nanotechnology*, 2009, **20**, 175602.
- 228. J.-K. Chang, C.-M. Wu and I. W. Sun, J. Mater. Chem., 2010, 20, 3729-3735.
- 229. C.-M. Wu, C.-Y. Fan, I. W. Sun, W.-T. Tsai and J.-K. Chang, J. Power Sources, 2011, **196**, 7828-7834.
- 230. X. H. Xia, J. P. Tu, Y. Q. Zhang, Y. J. Mai, X. L. Wang, C. D. Gu and X. B. Zhao, J. Phys. Chem. C, 2011, 115, 22662-22668.
- 231. G. X. Pan, X. Xia, F. Cao, P. S. Tang and H. F. Chen, *Electrochim. Acta*, 2012, **63**, 335-340.
- 232. T. Liu, S. Xu, L. Wang, J. Chu, Q. Wang, X. Zhu, N. Bing and P. K. Chu, *J. Mater. Chem.*, 2011, **21**, 19093.

- 233. M. Li, S. Xu, T. Liu, F. Wang, P. Yang, L. Wang and P. K. Chu, J. Mater. Chem. A, 2013, 1, 532-539.
- 234. F. Yang, J. Yao, F. Liu, H. He, M. Zhou, P. Xiao and Y. Zhang, *Journal of Materials Chemistry A*, 2013, 1, 594-601.
- 235. L. Yang, S. Cheng, Y. Ding, X. Zhu, Z. L. Wang and M. Liu, Nano Lett., 2012, 12, 321-325.
- 236. L. Huang, D. Chen, Y. Ding, S. Feng, Z. L. Wang and M. Liu, *Nano Lett.*, 2013, **13**, 3135-3139.
- 237. R. B. Rakhi, W. Chen, D. Cha and H. N. Alshareef, *Nano Lett.*, 2012.
- 238. J. Zhao, Z. Lu, M. Shao, D. Yan, M. Wei, D. G. Evans and X. Duan, *RSC Adv.*, 2013, **3**, 1045-1049.
- 239. L. Shen, Q. Che, H. Li and X. Zhang, Adv. Funct. Mater., 2014, 24, 2630-2637.
- 240. D. Lan, Y. Chen, P. Chen, X. Chen, X. Wu, X. Pu, Y. Zeng and Z. Zhu, ACS Appl. Mater. Interfaces, 2014.
- 241. C. Yuan, L. Hou, D. Li, L. Shen, F. Zhang and X. Zhang, *Electrochim. Acta*, 2011, 56, 6683-6687.
- 242. X.-C. Dong, H. Xu, X.-W. Wang, Y.-X. Huang, M. B. Chan-Park, H. Zhang, L.-H. Wang, W. Huang and P. Chen, ACS Nano, 2012.
- 243. L. Cao, F. Xu, Y. Y. Liang and H. L. Li, Adv. Mater., 2004, 16, 1853-+.
- 244. Y. Y. Liang, S. J. Bao and H. L. Li, J. Solid State Electrochem., 2007, **11**, 571-576.
- 245. L.-B. Kong, J.-J. Cai, L.-L. Sun, J. Zhang, Y.-C. Luo and L. Kang, *Mater. Chem. Phys.*, 2010, **122**, 368-373.
- 246. Y.-Y. Liang, H.-L. Li and X.-G. Zhang, *Mat. Sci. Eng. A-Struct.*, 2008, **473**, 317-322.
- 247. L.-B. Kong, M. Liu, J.-W. Lang, Y.-C. Luo and L. Kang, J. Electrochem. Soc., 2009, 156, A1000-A1004.
- 248. J.-W. Lang, L.-B. Kong, M. Liu, Y.-C. Luo and L. Kang, J. Electrochem. Soc., 2010, 157, A1341-A1346.
- 249. H. Wang, C. Holt, Z. Li, X. Tan, B. Amirkhiz, Z. Xu, B. Olsen, T. Stephenson and D. Mitlin, *Nano Res.*, 2012, **5**, 605-617.
- 250. W. Zhang, C. Ma, J. Fang, J. Cheng, X. Zhang, S. Dong and L. Zhang, *RSC Adv.*, 2013, **3**, 2483.
- 251. Q. Wang, X. Wang, B. Liu, G. Yu, X. Hou, D. Chen and G. Shen, *J. Mater. Chem. A*, 2013, 1, 2468-2473.
- 252. J. Xu, Q. Wang, X. Wang, Q. Xiang, B. Liang, D. Chen and G. Shen, ACS Nano, 2013, 7, 5453-5462.