Electronic Supplementary Information (ESI) for

Large-scale facile synthesis of Fe-doped SnO₂ porous hierarchical nanostructures and their enhanced lithium storage properties

Yuan Yan, ^a Feihu Du, ^b Xiaoping Shen,^{a,} * Zhenyuan Ji, ^a Hu Zhou,^c Xuexi Sheng^a and Guoxing Zhu ^a

^a School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
^b School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
^c School of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, P. R. China

*Corresponding author. E-mail: xiaopingshen@163.com

Initial feeding amount of SnCl ₂ (mmol)	Initial feeding amount of K ₃ Fe(CN) ₆ (mmol)	* Sn/Fe molar ratio
3	2	2.09
6	2	2.55
9	2	2.88

Table S1. Precursors of $Sn_m[Fe(CN)_6]_n$ obtained with different conditions.

* The Sn/Fe molar ratios in the $Sn_m[Fe(CN)_6]_n$ samples were determined by EDX.

Fig. S1 TGA curve of $Sn_m[Fe(CN)_6]_n$ precursor with a heating rate of 10 °C min⁻¹.

Fig. S2 XRD patterns of (a) SF1-350, (b) SF2-350 and (c) SF3-350.

Fig. S3 FESEM and TEM images of (a-c) SF1-450 and (d-f) SF1-650.

Fig. S4 FESEM images of (a-c) SF2-350 and (d-f) SF3-350.

Fig. S5 Raman spectra of (a) SF1-350, (b) SF1-450 and (c) SF1-650.

Fig. S6 Galvanostatic discharge/charge profiles of SF1-450 (a) and SF1-650 (b) at 200 mA g^{-1} .

Fig. S7 Lithium storage properties of (a) SF2-350 and (b) SF3-350 at 200 mA g⁻¹.

Fig. S8 UV-vis spectra of SF1-350, SF2-350, and SF3-350. Inset shows $(ahv)^2 vs$. photon energy plots of SF1-350, SF2-350 and SF3-350.

Fig. S9 Lithium storage properties of SF1-350 at the current density of 3000 and 4000 $MA g^{-1}$, respectively.

Fig. S10 XRD patterns of $Sn_m[Fe(CN)_6]_n$ (a) Sn/Fe=2.55; (b) Sn/Fe=2.09; (c)

Sn/Fe=2.88