Supplementary Information

Highly efficient vapor-deposited organic photovoltaic cells based on a simple bulk

heterojunction

Yunlong Zou¹, James Holst,² Yong Zhang,² and Russell J. Holmes^{1,†}

¹Department of Chemical Engineering and Materials Science

University of Minnesota, Minneapolis, MN, 55455

²New Products R&D, Sigma-Aldrich Corporation, 6000 N. Teutonia Ave, Milwaukee, WI 53209

1. Characterization of Indium Tin Oxide (ITO) Substrates:

Morphology:

Atomic Force Microscopy (AFM) experiments were carried out on two batches of ITO substrates and the results are shown in Figure 1. ITO batch A was used for all the device optimization experiments and ITO batch B was only used for charge extraction efficiency measurements in Fig. 4a. Based on a 4 μ m² image, the root mean square roughness (R_{ms}) is calculated to be 2.06 nm for batch A and 3.52 nm for batch B.

Sheet Resistance:

Sheet resistance was measured using the four-point probe method and calculated using Equation 1. The values are listed in Table 1. No significant difference in sheet resistance is observed for these two batches of ITO.

$$R_{sheet} = \frac{\pi}{\ln 2} \cdot \frac{I}{V}$$
 Equation 1

Figure 1: Atomic force microscopy images for ITO batch A (a) and B (b).

Device Performance:

The optimized device structure (70 nm DTDCPB: $C_{70} = 1:2$) was grown on both batches of ITO. All operating parameters are summarized and plotted in Figure 2. Devices fabricated on ITO batch B exhibit higher fill factor (FF), lower short-circuit current (J_{SC}) and lower opencircuit voltage (V_{OC}) than devices on ITO batch A, but the overall efficiency stays roughly the same. The reduction of V_{OC} can be explained by the larger R_{ms} observed in ITO batch B. A rougher ITO substrate may lead to a less uniform organic film grown on top of it, possibly causing local hot spots with high dark current which reduces V_{OC} .

Series resistance of devices grown on different batches of ITOs are calculated by fitting the dark current with generalized Shockley equations and listed in Table 1.¹ Devices grown on ITO batch B show a >40 % reduction in series resistance when compared to devices grown on ITO batch A, albeit the two batches of ITO show roughly the same sheet resistance according to the four-point probe measurement. ITO morphology may play a role in determining R_s . The difference in R_s will eventually impact FF, with ITO batch B (with lower R_s) showing higher FF.

ITO Batch	D (nm)	Sheet resistance	Eittad D (Oam ²)
	\mathbf{K}_{ms} (IIIII)	(Ω/ □)	Filled $\mathbf{K}_{\mathbf{s}}$ (S2CIII ²)
А	2.06	9.12±0.53	0.79±0.06
В	3.52	8.99±0.39	0.46±0.03
	0.90 0.88 0.88 0.88 0.88 0.84 15 0.84 15 	H H H H H H H H H H H H H H H H H H H	

Table 1: Morphological and electrical parameters for two batches of ITO substrates

Figure 2: Operating parameters for devices fabricated on different batches of ITO, shown as a 5-95 whisker plot and a box plot of standard deviation. The \Box indicates the mean value, and the × indicates the maximum or minimum value.

2. Dependence of Device Performance on Active Area:

Typical current density-voltage characteristics of devices with the following structure: 10 nm $MoO_x/70$ nm DTDCPB:C₇₀ (1:2)/10 nm BCP/100 nm Al, and an active area of 0.785 mm² and 9 mm² are plotted in Figure 3. Device operating parameters extracted from the plot are listed in Table 2, containing both the measured and spectral mismatch corrected J_{SC} and efficiency. The

large-area device shows lower V_{OC} and J_{SC} but a higher FF, overall the efficiency stays roughly the same.

Figure 3: Comparison of device performance between large-area device and small-area device under simulated AM 1.5G illumination at 100 mW/cm².

Device Area (mm ²)	V _{OC} (V)	J _{SC} (mA/cm²)	J _{SC} Corrected (mA/cm ²)	FF	Efficiency (%)	Efficiency Corrected (%)
0.785	0.89	14.6	14.8	0.62	8.0	8.2
9	0.86	14.2	14.4	0.65	7.9	8.1

Table 2: Operating parameters for devices with two different active areas

3. MoO_x film characterization:

A 10-nm-thick MoO_x film was deposited on Silicon wafer at a rate of 0.05 nm/s and a base pressure of $<8\times10^{-7}$ Torr via thermal evaporation. The MoO_x film contains mostly Mo^{6+} as measured by X-ray photoelectron spectroscopy, as shown in Figure 4.

Figure 4: XPS spectrum of MoO_x deposited via thermal evaporation method.

References:

1. B. P. Rand, D. P. Burk and S. R. Forrest, *Phys Rev B*, 2007, **75**, 115327.