Tailoring hierarchically structured SiO₂ spheres for

high pressure CO₂ adsorption

Supporting information

Maximilian W. Hahn, Matthias Steib, Andreas Jentys*, Johannes A. Lercher*

Technische Universität München, Department of Chemistry, Catalysis Research Center, Lichtenbergstraße 4, 85747 Garching, Germany

* Corresponding author. Phone +49-(89)-289-13540/13538. Fax: +49-(89)-289-13544. Email: johannes.lercher@mytum.de, andreas.jentys@mytum.de

Elemental Analysis

C, H, N Elemental Analysis

The C, H and N content of SiO_2 spheres were determined with a EURO EA elemental analyzer. 1-2 mg of each sample was weighed in a tin beaker. The samples were burned at 1000 °C in a He stream. After the reduction of NO_x compounds, the gas stream was separated with a GC column. The products (CO₂, NO₂, H₂O) were analyzed with a thermal conductivity detector (TCD).

Zr Elemental Analysis

50 mg of each sample was digested in a solution of 2 ml deionized water, 2 ml HF and 0.5 ml of H_2SO_4 . Sc_2O_3 was added as an internal standard. The acid digestion was conducted in a pressure resistant vessel at 85 °C until a clear solution was obtained. The Zr content was determined with inductively coupled plasma optical emission spectrometry (ICP OES). A ZrCIO₂/HCl solution was used as an internal standard.

Synthesis of SBA-15

6 g of hydrochloric acid (Sigma Aldrich, 37 wt.%) was added to 188.5 g of DI water and 10.25 g of poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) (P123, BASF, M_w of 5750 Da) under rigid stirring. The solution was stirred for 1 day at 35 °C until a homogenous phase was obtained. After 2 h tetraethylorthosilicate (TEOS, Sigma Aldrich, purity \geq 99 %) was added to the solution and the mixture was stirred at 35 °C for additional 24 h. The polymerized solution was aged in autoclaves at 80 °C for 24 h. The solution was filtered with deionized water 3 times and the precipitate was dried at 60 °C for 5 h prior to calcination in synthetic air (8 h at 600 °C, heating rate: 2.5 K/min, total flow rate: 100 ml/min).

Reactor column

The mixed precursor solution was injected directly into the injection flow on top of the reactor column (Figure S 1). The temperature of the reactor column was constant at 65 °C. The precursor solution was injected with a syringe pump at a flow rate of 15 ml·h⁻¹. The main flow in the column was 7 l·h⁻¹ and the injection flow was 2 l·h⁻¹. Both flows have to be adjusted to the density of the Si⁴⁺ precursor solution in order to assure the sinking of the spheres to the bottom of the reactor. The length of the reactor column is 4 m.

The equilibrium constant (K) was determined via the Langmuir adsorption isotherm:

 $\frac{\theta(p)}{\theta_{max}} = \frac{K \cdot p}{1 + K \cdot p}$

The equilibrium constant K was determined from the pressure dependency of the coverage θ (p) and the saturation coverage θ_{max} . Using values of K at two different temperatures the standard heat of adsorption ΔH^0 and standard entropy of adsorption ΔS^0 were calculated from the standard Gibb's free enthalpy ΔG^0 .

$$\begin{split} \Delta G &= \Delta G^{0} + R \cdot T \cdot ln(K) = 0 \\ \Delta G^{0} &= -R \cdot T \cdot ln(K) \\ \Delta G^{0} &= \Delta H^{0} - T \Delta S^{0} = -R \cdot T \cdot ln(K) \\ K &= e^{\frac{\Delta S^{0}}{R}} \cdot e^{-\frac{\Delta H^{0}}{RT}} \end{split}$$

Supporting figures

Figure S 1 Flow sheet of the reactor column for synthesis of millimeter-scaled SiO_2 spheres.

Figure S 2 Flow sheet of the high-pressure magnetic suspension balance (Rubotherm).

Figure S 3 N₂ adsorption (filled symbol) and desorption (unfilled symbol) isotherms of (a, b) aniline, (c, d) benzyl alcohol and (e, f) butanol spheres. Isotherms are vertically shifted in steps of 200 cm³·g⁻¹ for (a, c, e) as prepared and in steps of 400 cm³·g⁻¹ for (b, d, f) calcined SiO₂ spheres. 0 (I) , 1 (II) and 7 (III) wt.% Zr⁴⁺.

Figure S 4 N_2 physisorption isotherms of (a) SBA-15 and (c) zeolite 13X. Filled and empty symbols represent adsorption and desorption branches, respectively. Pore size distribution of (b) SBA-15 and (d) zeolite 13X calculated by BJH method (N_2 desorption branch) and (d) additionally DA method for micropore analysis.

Figure S 5 XRD of t-ZrO₂, (a) aniline, (b) but and (c) benzyl alcohol Zr(0) (l) , Zr(1) (ll) and Zr(7) (lll).

Figure S 6 CO₂ adsorption (circles) and H₂ adsorption (squares) at 35 °C (filled symbols) and 70 °C (unfilled symbols) of butanol SiO₂ spheres.

Figure S 7 Correlation between CO_2 uptake (35 °C, 40 bar) and (a) micropore, (b) mesopore and (c) macropore volume. SBA-15 (non-filled circle), zeolite 13X (filled circle) and aniline (triangle), benzyl alcohol (diamond) and butanol (square) spheres with varying Zr^{4+} contents.

Supporting tables

	С	Н	Ν	Zr
	[wt.%]	[wt.%]	[wt.%]	[wt.%]
As prepared SiO ₂ spheres				
Aniline Zr(0)	37.2	5.2	3.4	
Aniline Zr(1)	37.9	5.1	2.4	
Aniline Zr(7)	34.2	4.5	2.5	
Benzyl alcohol Zr(0)	38.4	5.2	2.4	
Benzyl alcohol Zr(1)	39.3	5.2	2.4	
Benzyl alcohol Zr(7)	37.9	5.3	2.4	
Butanol Zr(0)	35.7	4.9	2.1	
Butanol Zr(1)	31.4	4.2	2.4	
Butanol Zr(7)	33.3	4.7	2.12	
Calcined SiO ₂ spheres				
Aniline Zr(0)	0.5	1.0	< 0.1	0
Aniline Zr(1)	0.0	1.3	< 0.1	1.17
Aniline Zr(7)	0.5	1.4	< 0.1	6.3
Benzyl alcohol Zr(0)	0.4	1.5	< 0.1	0
Benzyl alcohol Zr(1)	0.3	1.6	< 0.1	1.15
Benzyl alcohol Zr(7)	0.3	1.4	< 0.1	7.2
Butanol Zr(0)	0.0	1.5	< 0.1	0
Butanol Zr(1)	0.1	1.7	< 0.1	1.2
Butanol Zr(7)	0.2	1.4	< 0.1	7.0

Table S 1C, H, N and Zr elemental analysis of aniline, benzyl alcohol and butanolspheres.

	BET surface area [m²·g⁻¹]
As prepared SiO ₂ spheres	
Aniline Zr(0)	35
Aniline Zr(1)	35
Aniline Zr(7)	84
Benzyl alcohol Zr(0)	33
Benzyl alcohol Zr(1)	13
Benzyl alcohol Zr(7)	< 5
Butanol Zr(0)	29
Butanol Zr(1)	69
Butanol Zr(7)	64
Calcined SiO ₂ spheres	
Aniline Zr(0)	520
Aniline Zr(1)	507
Aniline Zr(7)	478
Benzyl alcohol Zr(0)	534
Benzyl alcohol Zr(1)	525
Benzyl alcohol Zr(7)	511
Butanol Zr(0)	660
Butanol Zr(1)	610
Butanol Zr(7)	554

Table S 2BET surface area of aniline, benzyl alcohol and butanol spheres.

	Micropore volume ^a [cm ^{3.} q ⁻¹]	Mesopore volume ^b [cm ^{3.} q ⁻¹]
As prepared SiO ₂ spheres		
Aniline Zr(0)	0	0.26
Aniline Zr(1)	0	0.19
Aniline Zr(7)	0	0.33
Benzyl alcohol Zr(0)	0	0.26
Benzyl alcohol Zr(1)	0	0.11
Benzyl alcohol Zr(7)	0	0.02
Butanol Zr(0)	0	0.19
Butanol Zr(1)	0	0.32
Butanol Zr(7)	0	0.26
Calcined SiO ₂ spheres		
Aniline Zr(0)	0.08	0.54
Aniline Zr(1)	0.06	0.47
Aniline Zr(7)	0.05	0.37
Benzyl alcohol Zr(0)	0.06	0.53
Benzyl alcohol Zr(1)	0.06	0.45
Benzyl alcohol Zr(7)	0.05	0.17
Butanol Zr(0)	0.10	0.38
Butanol Zr(1)	0.07	0.37
Butanol Zr(7)	0.04	0.39

Table S 3Pore volume (N2 physisorption) of aniline, benzyl alcohol and butanolspheres. (a) Pore size smaller than 2 nm determined by t-plot method, (b) pore size of2 to 50 nm determined by BJH method (desorption branch).

	Average pore size [nm]
As prepared SiO ₂ spheres	
Aniline Zr(0)	15
Aniline Zr(1)	15
Aniline Zr(7)	10
Benzyl alcohol Zr(0)	15
Benzyl alcohol Zr(1)	17
Benzyl alcohol Zr(7)	9
Butanol Zr(0)	7.8
Butanol Zr(1)	3.7
Butanol Zr(7)	8.6
Calcined SiO ₂ spheres	
Aniline Zr(0)	15
Aniline Zr(1)	3.6
Aniline Zr(7)	3.6
Benzyl alcohol Zr(0)	3.6
Benzyl alcohol Zr(1)	3.6
Benzyl alcohol Zr(7)	3.6
Butanol Zr(0)	3.6
Butanol Zr(1)	3.6
Butanol Zr(7)	3.7

Table S 4Average pore size (N_2 physisorption) determined by BJH method(desorption branch) of aniline, benzyl alcohol and butanol spheres.

	Macropore volume [cm ^{3.} g ⁻¹]
Calcined SiO ₂ spheres	
Aniline Zr(0)	0.07
Aniline Zr(1)	0.11
Aniline Zr(7)	0.27
Benzyl alcohol Zr(0)	0.11
Benzyl alcohol Zr(1)	0.00
Benzyl alcohol Zr(7)	0.00
Butanol Zr(0)	1.21
Butanol Zr(1)	1.02
Butanol Zr(7)	0.23

Table S 5Macropore volume determined by Hg porosimetry of aniline, benzylalcohol and butanol spheres.

	Approximated wavenumber [cm ⁻¹]				
	1633	1610	1500	1458	1380
Aniline Zr(0)	0.65				
Aniline Zr(7)		3.52	1.03	0.58	0.16
Benzyl alcohol Zr(0)	0.69				
Benzyl alcohol Zr(7)		5.79	3.40	0.54	0.39
Butanol Zr(0)	1.31				
Butanol Zr(7)		5.21	1.12	0.37	0.11

Table S 6Integrated areas of the IR peaks (absorbance) at equilibrium conditions of10 mbar CO2.

	CO ₂		
	ΔH ⁰ _{ads} [kJ·mol ⁻¹]	ΔS ⁰ _{ads} [J·mol⁻¹·K⁻	
SBA-15	- 8.6	- 55.5	
13X	- 29.5	- 86.0	
Aniline Zr(0)	- 9.3	- 47.7	
Aniline Zr(1)	- 12.3	- 56.9	
Aniline Zr(7)	- 15.4	- 69.3	
Benzyl alcohol Zr(0)	- 12.3	- 56.8	
Benzyl alcohol Zr(1)	- 16.8	- 71.6	
Benzyl alcohol Zr(7)	- 7.7	- 43.9	
Butanol Zr(0)	- 17.6	- 74.2	
Butanol Zr(1)	- 16.0	- 68.8	
Butanol Zr(7)	- 13.3	- 62.9	

Table S 7 Standard heat of adsorption (ΔH^0_{ads}) and entropy (ΔS^0_{ads}) of the adsorption of CO₂ obtained by the Langmuir adsorption model.