Supporting Information

New Approach of Blending Polymeric Ionic Liquid with Polybezimidazole (PBI) for Enhancing Physical and Electrochemical Properties

Anita S. Rewar, Harshal D. Chaudhari, Rajith Illathvalappil, K. Sreekumar* and Ulhas K. Kharul*

Polymer Science and Engineering Division,CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune- 411008, INDIA Fax: +91-20-25902618; Tel: +91-20-25902180 E-mail: <u>uk.kharul@ncl.res, k.sreekumarl@ncl.res</u>

1. Synthesis of polybenzimidazole (PBI) and polymeric ionic liquid (PIL)

Polybenzimidazole was synthesized by polycondensation reaction of DAB and isophthalic acid, (PBI-I) as reported earlier [SCK JMS 2006] (Scheme S1a). A three-necked flask equipped with a mechanical stirrer, N_2 inlet and CaCl₂ drying tube was charged with 300 g of PPA, 10 g (0.04667 mol) of DAB and temperature was elevated to 140 °C. After dissolution of DAB, 0.04667 mol of isophthalic acid was added; temperature was slowly raised to 170 °C and maintained for 5 h under constant flow of N_2 . The temperature was further raised to 210 °C and maintained for 12 h. The polymer was obtained by precipitation in water. It was crushed, thoroughly washed with water, kept in 10% NaHCO₃ for 16 h; followed by water wash until filtrate was neutral to pH. The polymer was then soaked in acetone for 16 h, filtered and dried in vacuum oven at 100 °C for 7 days. Further purification by dissolving in DMAc (3% w/v) and reprecipitation in water yielded yellow colored fibrous polymer.

The PIL, viz., P[DADMA][TFMS] was prepared by anion exchange of a commercially available polymer, P[DADMA][Cl] (Scheme S1b). The 8% (w/v) solution of P[DADMA][Cl] was prepared in water and an equimolar quantity of Ag salt of trifluoromethanelsulphonate was added to the solution while stirring at ambient. As the replacement of Cl⁻ with the anion progressed, AgCl precipitated out. In view of polymeric nature of the cation, stirring continued for 24 h in order to ensure maximum possible exchange. The resulting mixture was centrifuged at 12000 rpm for 30 min to separate AgCl in precipitate form. To remove silver salt, centrifugation was repeated 5 times. In order to recover the product polymer, supernatant solution was poured on to a flat teflon surface and dried at 60 °C for 24 h and finally in vacuum oven at 60 °C for 7 days. The chloride

remained in the formed PIL was estimated by Volhard's method²⁵, in which 0.1 g of PIL was stirred in 20 ml of 0.01 M AgNO₃ solution for 24 h. Excess of unreacted AgNO₃ was titrated with 0.01 M KSCN, in order to assess chloride content in PIL.

Scheme S1. Synthesis of (a) polybenzimidazoles and (b) P[DADMA][TFMS].

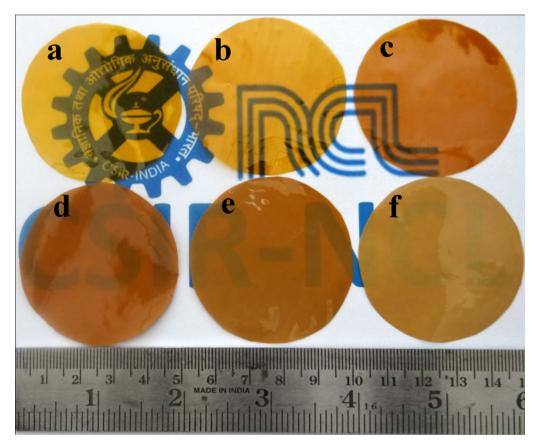


Fig S1. Photographs of PBI-PIL blend membranes (a) PBI, (b) PBI-PIL₅, (c) PBI-PIL₁₅, (d) PBI-PIL₂₅ (e) PBI-PIL₃₅, (f) PBI-PIL₄₅.

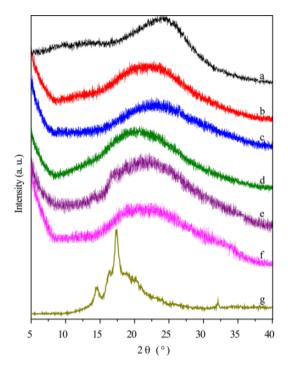


Fig. S2. WAXD pattern of PBI-PIL blend membranes (a) PBI, (b) PBI-PIL₅, (c) PBI-PIL₁₅, (d) PBI-PIL₂₅ (e) PBI-PIL₃₅, (f) PBI-PIL₄₅, (g) PIL.

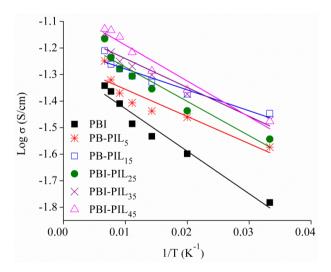


Fig. S3. Proton conductivity of PBI-PIL blends membrane at different temperatures.

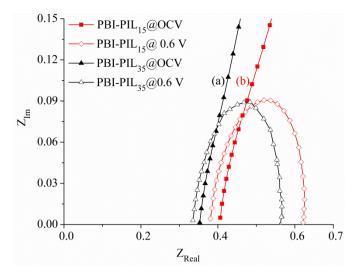
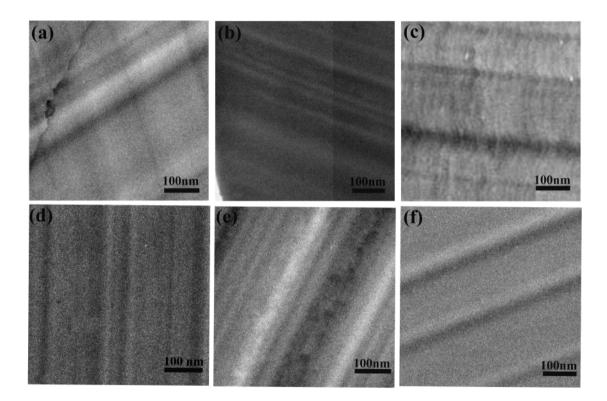



Fig. S4. MEA impedance curve of PBI-PIL₃₅ and PBI-PIL₁₅ blend membranes.

Fig. S5. TEM images of PBI-PIL blend membranes (a) PBI, (b) PBI-PIL₅, (c) PBI-PIL₁₅, (d) PBI-PIL₂₅ (e) PBI-PIL₃₅, (f) PBI-PIL₄₅. These figures do not show inhomogeneity in any of the blend composition. This further supports homogeneous blend formation.