Supporting Information

Slightly hydrogenated TiO₂ with enhanced photocatalytic

performance

Yong Yan,^{a+} Moyan Han,^{b+} Alexander Konkin,^c Tristan Koppe,^d Dong Wang,^{a*} Teresa Andreu,^{f*} Ge Chen,^{b*} Ulrich Vetter,^d Joan Ramón Morante,^f Peter Schaaf^a

Figure S1. XRD patterns of the pristine- TiO_2 and H- TiO_2 prepared by H_2 plasma treatment after different times of 30 s, 1 min, 3 min, 5 min, and 20 min.

Figure S2. XPS O 1*s* core level spectrum of the pristine-TiO₂ and H-TiO₂ prepared by H_2 plasma treatment after different times of 30 s, 1 min, 3 min, 5 min, and 20 min.

Figure S3. XPS valence band spectra of the pristine- TiO_2 and H- TiO_2 prepared by H_2 plasma treatment after different times of 30 s, 1 min, 3 min, 5 min, and 20 min.

Figure S4. The experimental and simulated bulk Ti^{3+} signal of H-TiO₂-20min, and the simulated subsurface Ti^{3+} signal of H-TiO₂-1min without light irradiation, the relative amount of Ti^{3+} was appraised through the double integration of the resonance lines: S₁ and S₂ represented as signal 1 and 2, respectively; IS₁ and IS₂ represented as the integration of the signal 1 and 2, respectively (EPR absorption spectra); DIS₁ and DIS₂ represented as the double integration of the signal 1 and 2, respectively (green and red area in EPR absorption spectra).

Figure S5. Photocatalytic degradation of methylene blue $(\ln C_0/C \text{ versus irradiation time})$ over pristine-TiO₂ and H-TiO₂ prepared by H₂ plasma treatment after different times of 30 s, 1 min, 3 min, 5 min, and 20 min and their calculated reaction rates (k).

Figure S6. EPR analysis of H-TiO₂-20min: "dark spectra" represented as the spectra recorded without light irradiation; "523 nm light-excited spectra" represented as the spectra recorded under 523 nm irradiation; "405 nm light-excited spectra" represented as the spectra recorded under 405 nm irradiation; "523 nm light-induced EPR spectra"

represented as the spectra recorded under 523 nm irradiation subtracted by that of the spectra without light irradiation ("523 nm light-excited spectra" - "dark spectra"); "405 nm light-induced EPR spectra" represented as the spectra recorded under 405 nm irradiation subtracted by that of the spectra without light irradiation ("405 nm light-excited spectra" - "dark spectra"). "CuL₂" represented as the hyperfine structure lines of the Cu²⁺(DTC)₂ complex in benzene solution, which has been used as the correct g factors of studied paramagnetic centre determination (low field maximum amplitude of m_I=-1/2 hfs line attributed to g=2.025).

Figure S7. The experimental and simulated light-induced EPR spectra of prisine-TiO₂ under 405 nm light irradiation, the relative amount of Ti³⁺ and O⁻ were appraised through the double integration of the resonance lines: S₁ and S₂ represented as signal 1 and 2, respectively; IS₁ and IS₂ represented as the integration of the signal 1 and 2, respectively (EPR absorption spectra); DIS₁ and DIS₂ represented as the double integration of the signal 1 and 2, respectively (green and red area in EPR absorption spectra).