Supplementary Information

Cu(II) nanocluster-grafted, Nb-doped TiO₂ as an efficient visible-light-sensitive photocatalysts based on energy-level matching between surface and bulk states

Min Liu,[‡] Xiaoqing Qiu,[‡] Kazuhito Hashimoto*,^{‡,§} and Masahiro Miyauchi,^{*,†,II}

- [†]Department of Metallurgy and Ceramics Science, Graduate School of Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan.
- [‡]Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan.
- [§]Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
- ^{II}Japan Science and Technology Agency (JST), ACT-C, 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan.

Email: mmiyauchi@ceram.titech.ac.jp, hashimoto@light.t.u-tokyo.ac.jp

Contents

Table S1, S2 Figs. S1 to S16 Reference

sample		Cu(II)-Nb _x Ti _{1-x} O ₂				
Initial Nb (wt%)	0.01	0.05	0.1	0.5	1	
Measured Nb (wt%)	0.011	0.055	0.111	0.506	0.972	

Table S1. ICP measurement of Cu(II)-Nb_xTi_{1-x}O₂.

Sample	TiO 2	Nb _x Ti _{1-x} O ₂	Cu(II)-TiO ₂	Cu(II)-Nb _x Ti _{1-x} O ₂
BET surface area (m ² /g)	6.03	5.76	5.93	5.84

Table S2. BET surface area of bare TiO₂, Nb_xTi_{1-x}O₂, Cu(II)-TiO₂, and Cu(II)-Nb_xTi_{1-x}O₂.

Figure S1. XRD patterns of 0.01 wt%, 0.1 wt% and 1 wt% Nb doped TiO_2 .

Figure S2. SEM images of $Nb_xTi_{1-x}O_2$ at (a) x=0.01 wt%, (b) x=0.1 wt%, and (c) x=1 wt%, respectively.

Figure S3. (a) TEM, (b) HRTEM images and (c) EDS pattern of Cu(II)-Nb_xTi_{1-x}O₂. Nanoclusters (marked by red arrows) were highly dispersed on the Nb_xTi_{1-x}O₂ surface. In Figure S3b, a short dashed curve is outlined the Cu(II) nanoclusters. The good attachment of nanoclusters and Nb_xTi_{1-x}O₂ was clearly observed. Figure S3c shows the result of EDS point analysis on the corresponding Cu(II) nanocluster marked by the short dashed curve in Figure S3b.

Figure S4. Full-scale XPS spectra of pure TiO_2 , $Nb_xTi_{1-x}O_2$, and $Cu(II)-Nb_xTi_{1-x}O_2$, respectively.

Figure S5. Ti 2p core-level spectra of pure TiO₂, and Nb_xTi_{1-x}O₂ at x = 0.01 wt%, 0.5 wt% and 1 wt%, respectively.

Figure S6. ESR spectra of pure TiO_2 and $Nb_xTi_{1-x}O_2$ at 0.1 wt%.

Figure S7. Nb 3d core-level spectra of pure Nb₂O₅, physical mixed Nb₂O₅ and TiO₂ and Nb_xTi_{1-x}O₂ at x = 0.1 wt%, respectively.

Figure S8. VB XPS of bare TiO₂, and Nb_xTi_{1-x}O₂ at x=0.1 wt%, respectively.

Figure S9, Band gap of bare TiO_2 and $Nb_xTi_{1-x}O_2$ according to the Kubelka–Munk function.

Figure S10. The light source for the visible light irradiation.

Figure S11. The CO₂ generation curve over Cu(II)-Nb_xTi_{1-x}O₂ (x=0.1 wt%) sample under visible light irradiation. The CO₂ generation rate (R_{CO2}) was obtained from the slope of the CO₂ generation curve between the irradiation time of ca. 0 to 30 h.

The calculation of quantum efficiency (QE) was conducted using the same procedure reported in literature (1).

Take Cu(II)-Nb_xTi_{1-x}O₂ at x=0.1% sample for example. Under the visible light irradiation, the wavelength of visible light is from 400 to 530 nm, and the light intensity is 1 mW/cm². The irradiating area is 5.5 cm². Therefore, the absorption rate of incident photons (R_p^a) was determined to be 7.91×10¹⁴ quanta sec⁻¹ using the following equation: $R_p^a = \int_{400}^{530} S \times \alpha \times I(S \text{ is the area of the sample, } \alpha \text{ is the light})$ absorption and I is the light intensity at each wavelength). As for CO₂ generation, IPA to CO₂ assuming that the reaction from is proceeded: $C_3H_8O+5H_2O+18h^+ \rightarrow 3CO_2+18H^+$, that is, six photons are required to produce one CO_2 molecule. The CO_2 generation rate (R_{CO2}) was obtained from the slope of the CO₂ generation curve in Figure S9. As shown in Figure S9, R_{CO2} was determined be 0.20 μ mol·h⁻¹. Thus the QE for CO₂ generations were to

calculated using the following equation:

 $QE = 6 \times CO_2$ generation rate/absorption rate of incident photon

 $=6\times(2.0\times10^{-1}\times10^{-6}/3.6\times10^{3})\text{mol}\cdot\text{sec-}1\times6.0\times10^{23}\text{quanta}\cdot\text{mol}^{-1}$

 $^{1}/7.91 \times 10^{14}$ quanta · sec⁻¹

 $= 25.3 \times 10^{-1} (25.3\%).$

Figure S12. CO₂ generation over (a) Cu(II)-Fe_xTi_{1-x}O₂ at x=0.05 wt%, 0.1 wt%, and 0.5 wt%, and (b) Cu(II)-W_xTi_{1-x}O₂ at x=0.05 wt%, 0.1 wt%, and 0.5 wt%, under visible light irradiation.

Figure S13. CO_2 generation over Cu(II)-Nb_xTi_{1-x}O₂ at x=0.01 wt%, 0.05 wt%, 0.1 wt%, 0.5 wt% and 0.5 wt% under visible light irradiation.

Figure S14. CO_2 generation over Cu(II)-Nb_xTi_{1-x}O₂ grafted with x=0.05 wt%, 0.1 wt%, and 0.5 wt% Cu(II) nanolcusters under visible light irradiation.

Figure S15. Scheme for the preparation of the samples by introducing a TiO_2 thin layer between Cu(II) nanoclusters and Nb_xTi_{1-x}O₂ (x=0.1 wt%).

Figure S16. The CO₂ generation curve over Cu(II)-Nb_xTi_{1-x}O₂ and Cu(II)-TiO₂@Nb_xTi_{1-x}O₂ (x=0.1 wt%) samples under the same visible light irradiation.

References

H. G. Yu, H. Irie, Y. Shimodaira, Y. Hosogi, Y. Kuroda, M. Miyauchi, K. Hashimoto, *J. Phys. Chem. C* 2010, **114**, 16481-16487.