Supporting Information

Ultrathin Single-Crystalline Vanadium Pentoxide Nanoribbons Constructed 3D Networks for Superior Energy Storage

Liujun Cao,^{*a,b*} Jixin Zhu,^{*c*} Yanhong Li,^{*d*} Peng Xiao,^{*d*} Yunhuai Zhang,^{*a*} Shengtao Zhang*^{*a*}, Shubin Yang*^{*b,e*}

^aSchool of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, China. Email: stzhang@cqu.edu.cn

^bDepartment of Mechanical Engineering & Materials Science, Rice University, Houston, Texas 77005, USA

°TUM CREATE, 1 CREATE Way, #10-02 CREATE Tower, 138602, Singapore

^dSchool of Physics, Chongqing University, Chongqing, 400044, China

^eSchool of Materials Science and Engineering, Beihang University,

Beijing, 100191, China. Email: yangshubin@buaa.educn

Figure S1. (a) Schematic illustration for the fabrication of 3D V₂O₅@PPy networks by a combined hydrothermal synthesis, freeze-drying and subsequent PPy coating. The optical photos of (b) commercial V₂O₅ particles, (c) as-prepared V₂O₅ nanoribbon gelatin, (d) pure 3D V₂O₅ network gel produced by freeze-drying process, and (e) 3D V₂O₅@PPy network produced by PPy nanocasting process.

Figure S2. (a) and (b) SEM images with different magnifications for V_2O_5 sample obtained by normal drying method, demonstrating that the V_2O_5 nanoribbons are strongly aggregated and compactly stacked together without using freeze-drying process.

Figure S3. (a) and (b) HRTEM images of V_2O_5 @PPy ribbon with different magnifications. (a) HRTEM image shows the incontinuous structure of PPy on the surface of V_2O_5 wellcrystalline ribbon (marked by white dot line). (b) HRTEM image discloses the interfaces between PPy nanograins and well-defined V_2O_5 (marked by red dot line) (scale bar, 2 nm).

Figure S4. (a) XRD patterns of 3D V₂O₅@PPy network, showing a main peak at 6.1°, and three small peaks at 12.2°, 18.3° and 24.4°, well consistent with those of pure 3D V₂O₅ network. (b) XPS surveys of 3D V₂O₅@PPy network and pure 3D V₂O₅ network. High resolution spectra of (c) C1s, (d) N1s, (e) V2p3 and (f) O1s, respectively.

Figure S5. The Fourier transform infrared spectroscopy (FTIR) spectra of PP_y , 3D V₂O₅ network and V₂O₅@PP_y network. There is a band at 1556 cm⁻¹, attributed to the fundamental vibration of pyrrole ring, and another band at 1173 cm⁻¹ is characteristic of the C-N stretching vibration, demonstrating the presence of PP_y in our 3D V₂O₅@PP_y network.

Figure S6. Nitrogen adsorption/desorption isothermal of the 3D pure V_2O_5 network and $V_2O_5@PP_y$ network, showing the surface area of 130 and 35 m²g⁻¹, respectively. Insert was the pore size distribution of 3D pure V_2O_5 network.

Figure S7. The electrochemical performances of a symmetric supercapacitor using 3D $V_2O_5@PP_y$ network as electrode material. (a) CV curves at various scan rates from 5 to 100 mV s⁻¹, (b-c) Galvanostatic charge-discharge curves at different current densities from 0.25 to 10 A g⁻¹.

Figure S8. The influence of of PP_y content on the cyclic voltammetry (CV) curves of 3D $V_2O_5@PP_y$ networks. The shape of the CV curve become distinctly distorted with increasing PP_y content from 5 wt% to 40 wt% at the scan rate of 20 mV s⁻¹ in 1.0 M Na₂SO₄ aqueous solution.

Figure S9. The influence of PP_y content on rate capabilities of 3D V₂O₅@PP_y networks at different current densities. The specific capacitances calculated from charge-discharge curves largely decreases with increasing PP_y coating amount (from 5 wt% to 40 wt%).

Figure S10. The equivalent circuit diagram used for fitting the EIS profiles of 3D $V_2O_5@PP_y$ network, pure 3D V_2O_5 network and V_2O_5 particles@PP_y.

Figure S11. (a) A series of CV measurements at 100 mV s⁻¹, while the operating potential is extended to 2.0 V, a distinct peak appears at the end of CV (select area in (a)), ascribed to the evolution of oxygen. (b) Galvanostatic charge/discharge plots at 1A g⁻¹ with the potential window between 1.0 and 2.0 V, when the voltage reach 2.0 V, the charge-discharge curve is no longer symmetric (select area in (b)) indicating non-capacitive behavior.

Figure S12. Galvanostatic charge/discharge plots of 3D V₂O₅@PPy network// 3D rGO asymmetric supercapacitor at high current densities between 2 and 10 A g^{-1} under the potential window of 1.8 V.

Figure S13. Specific capacitance of $V_2O_5@PP_y$ network// 3D rGO asymmetric supercapacitorl under different current densities (from 0.25 to 10 A g⁻¹) calculated from galvanostatic charge/discharge plots.

Table 1. The kinetics parameters of 3D V_2O_5 @PPy network, pure 3D V_2O_5 network and V_2O_5 particles@PPy.

Electrodes	$R_{\rm s}\left(\Omega ight)$	$R_{\rm ct}\left(\Omega\right)$
$3D V_2O_5@PP_v$ network	0.6	5.1
Pure 3D V_2O_5 network	0.7	7.4
$V_2O_5@PP_y$ particles	1.0	8.6