Supporting Information

The role of emissive charge transfer states in two polymer/fullerene organic photovoltaic blends: tuning charge photogeneration through the use of processing additives

Tracey M. Clarke, Jeff Peet, Christoph Lungenschmied, Nicolas Drolet, Xinhui Lu, Benjamin Ocko, Attila J. Mozer, and Maria Antonietta Loi

Figure S1. Summary of device data for PCPDTTTz:PCBM and PDTSiTTZ:PCBM, showing average efficiency, FF, J_{sc} and V_{oc} over several devices of differing optical density (OD).

Figure S2. Transient absorption spectra of PCPDTTTz:PCBM belnd films measured with and without DIO.

Figure S3. The photoluminescence decays in the 670-700 nm spectral range for pristine PDTSiTTz and PCPDTTTz films as compared to solutions in o-dichlorobenzene (a). The photoluminescence decays with time for pristine PDTSiTTz and PCPDTTTz (on encapsulated quartz) measured in the spectral range at the emission maximum of 670 – 700 nm, compared to PCPDTBT and Si-PCPDTBT (on encapsulated glass) (b).

Figure S4. The photoluminescence decays with time for pristine PCPDTTTz and blends with PCBM, varying the weight percentage of PCBM and measuring in the spectral range of 1000-1100 nm (c).

Figure S5. Steady-state absorption spectra of pristine PCPDTTTz and PDTSiTTZ solutions (o-DCB) and thin films.