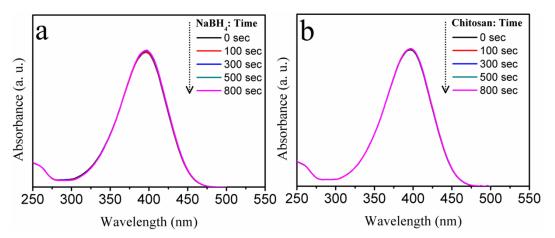
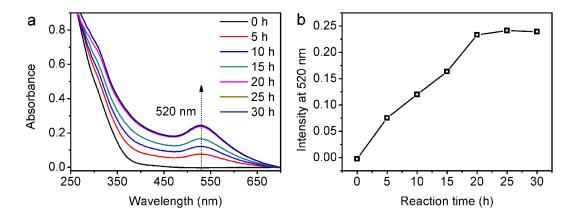
Environmentally Benign Magnetic Chitosan/Fe₃O₄ Composites


as Reductant and Stabilizer for Anchoring Au NPs and Their

Catalytic Reduction of 4-nitrophenol


Yunfeng Qiu,^a Zhuo Ma^b and PingAn Hu^{*a},

^{*a*} State Key Lab of Urban Water Resource and Environment & Key Lab of Microsystem and Microstructure of the Ministry of Education, Harbin Institute of Technology, Harbin, Heilongjiang 150080, China. E-mail: <u>hupa@hit.edu.cn</u>

^b School of Life Science and Technology, Harbin Institute of Technology, 92 West Dazhi Street, Harbin, Heilongjiang, 150001, P.R. China.

Fig. S1 (a) and (b) are UV–vis spectra of 4–nitrophenolate ion in distilled water during the reduction reaction in the presence of NaBH₄ and chitosan/NaBH₄ without Au NPs, respectively. The characteristic peak intensity of 4–nitrophenolate ion was unchanged. The results illustrated that NaBH₄ was inert towards the reduction of 4–NP. Additionally, the reduction reaction couldn't proceed efficiently only in the presence of chitosan/NaBH₄ without any Au NPs.

Fig. S2 (a) UV-vis spectra measurements of 2.5 wt% Au loading amount as a function of aging time; (b) Plot of the intensity at 520 nm against reaction time. It is clear to see that the characteristic peak at 520 nm increased gradually as a function of aging time. And there is a plateau in the plot of intensity at 520 nm against aging time in **Fig. S2b**, viz. the reduction of Au ions to zerovalent Au nanoparticles at 50° ends around 20h.