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S Table 2 
Wet impregnation adsorption data 

 - Δmtotal [%] 400 °C a Texo [°C] 

Diethylether   

CeO2 0.8 235 

CeO2/H-ZSM-5calc. 0.7 190-240 

H-ZSM-5calc. 4.7 240 

CeO2/13X calc. 0.7 280 

13X calc. 1.5 320 

Triethylamine   

CeO2 1.4 180 

CeO2/H-ZSM-5calc. 1.9 180-250/380 

H-ZSM-5calc. 0.8 240 

CeO2/13X calc. 0.0 280 

13X calc. 0.0 340 

Limonene   

CeO2 1.5 140-180 

CeO2/H-ZSM-5calc. 2.3 300 

H-ZSM-5calc. 0.2 230 

CeO2/13X calc. 0.3 280 

13X calc. 0.4 300 

Linalool   

CeO2 2.4 180 

CeO2/H-ZSM-5calc. 1.4 250 

H-ZSM-5calc. 0.8 265 

CeO2/13X calc. 1.1 200 

13X calc. 0.4 210 

Hexanoic acid   

CeO2 4.7 178 

CeO2/H-ZSM-5calc. 3.2 230 

H-ZSM-5calc. 1.3 265 

CeO2/13X calc. 3.3 230 

13X calc. 1.8 220-325 
a blank and diethylether subtracted 
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S Table 3 
Gas phase adsorption data  

 
- Δmtotal [%] 

400 °C a
Texo [°C] 

Limonene   

CeO2 3.8 140 

CeO2/H-ZSM-5calc. 4.6 265 

H-ZSM-5calc. 6.5 270 

CeO2/13X calc. 2.4 210 

13X calc. 3.5 - 

Linalool   

CeO2 3.6 180 

CeO2/H-ZSM-5calc. 3.7 265 

H-ZSM-5calc. 2.3 270 

CeO2/13X calc. 3.2 195/255 

13X calc. 4 200 

Triethylamine   

CeO2 0.6 175/230 

CeO2/H-ZSM-5calc. 2.4 170/240 

H-ZSM-5calc. 2.9 - 

CeO2/13X calc. 2.1 280 

13X calc. 2.1 290/340 
a blank subtracted 
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Cost estimation 

A detailed economic study was not performed. However, assuming an average concentration of 

indoors VOC of 0.5 ppm (equals 2.6 mg/m3 for an average molecular weight of 130 g/mol) (Huey-Jen 

Su, Atmospheric Environment 41 (2007) 1230 –1236) and an adsorption capacity of 3 wt. %, this 

would correspond to 30 g VOC/kg adsorber. For an average room volume of 50 m3 (total VOC about 

130 mg) this would correspond to about 230 room volumes (230 r. V. /kg adsorber). At this point the 

adsorber needs to be regenerated. Systems based on activated carbon can adsorb about 10 wt. % (100 g 

VOC) corresponding to about 770 r. V. /kg adsorber. However, at this point the activated carbon must 

be replaced or regenerated separately, as regeneration on place would simply release the captured 

VOC in the environment. This will increment significantly the maintenance costs and the carbon 

emissions as small amounts of AC are not reactivated but incinerated. Compared to HVAC systems 

where the indoor air is replaced typically tree times per hour large air volumes must be filtered, cooled 

or heated in order to assure good indoor air quality. This will further increment the running costs. 

Additionally, an HVAC system is a complex construction and periodical maintenance is required. 

Table 4 Cost estimate for weekly regeneration (2.2 kg adsorber)  

Material 
Material price 

[$/kg] 

Adsorber material costs 

[$/Adsorber] 

Time to exhaustion 

[d]c 

Cost for one year of 

operation [$] 

     

CeO2/zeolite 20 44 7 144 a 

Activated 

carbon 
2 4.4 23 816 b 

a assuming 2 service/maintenance  
b assuming 15 service/exchange  plus material 
c air exchange is 3 room volumes per hour 
Service/maintenance costs: 50$/service 
 
From the table above is visible, that after about 3 cycles (exhaustion/regeneration for CeO2/zeolite) the 

acquisition costs are equalized.  

 

 


