## **Electronic Supplementary Information**

## Template-Assisted Synthesis of CoP Nanotubes to Efficiently Catalyze Hydrogen-Evolving Reaction

Hongfang Du,<sup>a,b</sup> Qian Liu,<sup>b</sup> Ningyan Cheng,<sup>b</sup> Abdullah M. Asiri,<sup>c</sup> Xuping Sun\*<sup>b,c</sup> and Chang Ming Li\*<sup>a</sup>

<sup>a</sup> Institute for Clean Energy & Advanced Materials, Faculty for Materials and Energy, Southwest University, Chongqing 400715, China. E-mail: ecmli@swu.edu.cn. Fax: (+86) 023-68254969.

<sup>b</sup> State Key Lab of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China. E-mail: sunxp@ciac.ac.cn. Fax: (+86) 431-85262065.

<sup>c</sup> Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah
 21589, Saudi Arabia

## **Experimental Section**

**Chemicals and Materials:** Al foil (purity: 99.99%, thickness: 0.3 mm) was purchased from Alfa Aesar. NaH<sub>2</sub>PO<sub>2</sub> and CoCl<sub>2</sub>.6H<sub>2</sub>O were purchased from Aladdin Ltd. (Shanghai, China). Nafion (5 wt%) was bought from Sigma-Aldrich. Other chemicals used were bought from Beijing Chemical Corporation. All the reagents were used as received without further purification. The water used throughout all experiments was purified through a Millipore system.

**Preparation of CoP NTs and CoP NPs:** Porous AAO films were prepared according to reported method (H. Masuda, K. Fukuda, *Science*, 1995, **268**, 1466). As-synthesized AAO films (1 g) were soaked in 0.5 M cobalt chloride ethanol solution for 2 h, followed by drying in a vacuum oven at 80 °C. To impregnate the walls of the template with cobalt chloride completely, all the soaking process were assisted with sonication and repeated twice. The obtained pink films and NaH<sub>2</sub>PO<sub>2</sub> were put at two separate positions in a porcelain boat with NaH<sub>2</sub>PO<sub>2</sub> at the upstream side of the furnace, and then heated at 300°C for 2 h in a static Ar atmosphere. After that, the films were collected after cooling to ambient temperature under Ar. CoP NTs were obtained by etching AAO template with 5% HF solution and it was stable in the etching process. The CoP NPs were similarly prepared by direct phosphidation of cobalt chloride powder.

**Characterizations:** Powder XRD data were acquired on a RigakuD/MAX 2550 diffractometer with Cu K $\alpha$  radiation ( $\lambda$ =1.5418 Å). TEM measurements were performed on a HITACHI H-8100 electron microscopy (Hitachi, Tokyo, Japan) with an accelerating voltage of 200 kV. SEM measurements were carried out on a XL30 ESEM FEG scanning electron microscope at an accelerating voltage of 20 kV. XPS measurements were performed on an ESCALABMK II X-ray photoelectron spectrometer using Mg as the exciting source.

Electrochemical Test: All electrochemical measurements were performed at room temperature using a CHI660E potentiostat (CH Instruments, China) with a typical three-electrode setup. Glassy carbon electrode (GCE,  $\Phi = 4$  mm), graphite rod and saturated calomel electrode (SCE) were used as working, counter and reference electrode, respectively. Before each electrochemical measurement, SCE reference electrode was calibrated by a reversible hydrogen electrode (RHE) using a Pt foil immersed in 0.5 M H<sub>2</sub>SO<sub>4</sub> saturated with high purity hydrogen (Y. Xu, M. Gao, Y. Zheng, J. Jiang and S. Yu, *Angew. Chem. Int. Ed.*, 2013, **52**, 8546), and all potentials in this work are reported versus RHE. A

solution of 0.5 M H<sub>2</sub>SO<sub>4</sub> was used as electrolyte. Catalyst ink was prepared by dispersing 5 mg catalyst into 1 mL ethanol containing 20  $\mu$ L 5 wt% Nafion and sonicated for 30 min. Then 5  $\mu$ L of the catalyst ink was loaded onto a GCE with a loading of 0.2 mg/cm<sup>2</sup>. Polarization curves were collected at a sweep rate of 2 mV/s over a range of -0.5 ~0.2 V. Corresponding Tafel curves were calculated from the LSV data. Durability were tested by CVs with a scan rate of 100 mV/s ranging from -0.2 to 0.2 V. The time-dependent current density curves were recorded under static overpotential of 150 mV. The number of active sites was examined by CVs at a scan rate of 50 mV/s ranging from -0.2 to 0.8 V in phosphate buffer (pH = 7). The FY was carried out under static overpotential of 250 mV, the pressure changes in cathodic compartment was monitored by a pressure sensor.

| Catalyst                                           | Loading<br>(mg/cm <sup>2</sup> ) | Current density<br>j<br>(mA/cm <sup>2</sup> ) | Overpotential at<br>the corresponding<br><i>j</i><br>(mV) | Ref.      |
|----------------------------------------------------|----------------------------------|-----------------------------------------------|-----------------------------------------------------------|-----------|
| CoP NTs                                            | 0.2 -                            | 2                                             | 72                                                        | This work |
|                                                    |                                  | 10                                            | 129                                                       |           |
| double-gyroid<br>MoS <sub>2</sub>                  | -                                | 2                                             | 190                                                       | 6с        |
| metallic MoS <sub>2</sub><br>nanosheets            | -                                | 10                                            | 195                                                       | 6d        |
| MoS <sub>3</sub> particles                         | 0.032                            | 2                                             | ~190                                                      | 6f        |
| MoS <sub>2</sub> /MoO <sub>3</sub>                 | -                                | 10                                            | ~310                                                      | 6h        |
| Bulk Mo <sub>2</sub> C                             | 1.4                              | 10                                            | ~210                                                      | 6ј        |
| MoC<br>nanocrystals                                | 0.025                            | 2                                             | ~200                                                      | 6k        |
| MoSe <sub>2</sub> /RGO                             | 0.16                             | 10                                            | ~150                                                      | 61        |
| NiMoN/C                                            | 0.25                             | 2                                             | ~170                                                      | 60        |
| Co <sub>0.6</sub> Mo <sub>1.4</sub> N <sub>2</sub> | 0.24                             | 10                                            | 200                                                       | 6р        |
| FeP nanosheets                                     | -                                | 10                                            | ~240                                                      | 12c       |
| TaCN<br>nanoparticles                              | 0.5                              | 2                                             | ~280                                                      | 15        |

**Table S1** Comparison of HER performance in acidic media for CoP NTs with other HER catalysts mentioned in the main text.



**Fig. S1** CVs of CoP NTs, CoP NPs and bare GCE at a scan rate of 50 mV/s over a range of  $-0.2\sim0.8$  V in phosphate buffer (pH = 7).



Fig. S2 XPS spectra in the (a) Co (2p) and (b) P (2p) regions of CoP NTs.