Electronic Supplementary Information (ESI)

Hollow and porous titanium nitride nanotubes as high performance catalyst

support for oxygen reduction reaction

Zhanchang Pan^{1,*}, Yonghao Xiao¹, Zhenggao Fu¹, Guohe Zhan¹, Shoukun Wu², Chumin

Xiao¹, Guanghui Hu¹, Zhigang Wei¹

¹School of Chemical Engineering and Light Industry, Guangdong University of Technology,

Guangzhou, Guangdong, 510006, China

²Huizhou King Brother Electronic Technology Co., Ltd, Huizhou, 516083, China

*Corresponding author: Zhanchang Pan, panzhanchang@163.com

Figure S1.

Figure S1. (a) and (c) SEM images of TiO_2 NTs. (b) and (d) SEM images of TiN NTs.

Figure S2.

Figure S2. (a) TEM and (b) enlarged TEM images of $TiO_2 NTs$

Figure S3.

Figure S3. (a) CVs of TiN NTs in N_2 saturated 0.5M H_2SO_4 solution at a scan rate of 50 mV/s. (b) The polarization curves of pure TiN NTs in a 0.1 M HClO₄ solution saturated with oxygen, using a RDE at 1600 rpm at a scan rate of 10 mV/s.

Figure S4. (a) TEM and (b) magnified TEM images of Pt/TiN NTs after the ADT test.

Figure S5.

Figure S5. TEM images of the small Pt particles (pointed by arrows) alongside the bigger ones observed on the Pt/TiN NTs, from collected the Pt/TiN NTs catalyst after the ADT test, captured in different regions from the same TEM sample.