Supplementary Information

Highly Activated K-Doped Iron Carbide Nanocatalysts Designed by Computational Simulation for Fischer-Tropsch Synthesis

5

Ji Chan Park, Sang Chul Yeo, Dong Hyun Chun, Jung Tae Lim, Jung-Il Yang, Ho-Tae Lee, Sungjun Hong, Hyuck Mo Lee, Chul Sung Kim, and Heon Jung*

10

20 Fig. S1 K-free Hägg-carbide (χ -Fe₅C₂) model of a 1x2 super-cell in top view.

Fig. S2 TEM images and particle size distribution histograms of K-doped χ -Fe₅C₂ nanoparticles on activated charcoal: (a-b) K/Fe = 0.025, (c-d) K/Fe = 0.050, (e-f) K/Fe = 0.100. More than 200 particles were counted for each sample. All bars represent 50 nm.

40 Fig. S3 (a) Normalized Fe K-edge X-ray absorption spectra, (b) derivative of normalized absorption coefficient, and (c-d) Fe K-edge EXAFS spectra for K-doped χ -Fe₅C₂ on activated charcoal at K/Fe = 0.025 and K/Fe = 0.075.

5 Fig. S4 CO conversion data for K-free and K-doped χ -Fe₅C₂/charcoal catalysts. (a) K-free Fe₅C₂, (b) K/Fe = 0.025, (c) K/Fe = 0.050, (d) K/Fe = 0.075, (e) K/Fe = 0.100.

Fig. S5 CO₂ and hydrocarbon product selectivity data for K-free and K-doped χ -Fe₅C₂/charcoal catalysts. (a) K-free Fe₅C₂, (b) K/Fe = 0.025, (c) K/Fe = 0.050, (d) K/Fe = 0.075, (e) K/Fe = 0.100. 5

Table S1 Calculated adsorption energies (E_{ad}) and Bader charges (q) for the potassium atom located on the various adsorption sites of Hägg-carbide model.

	Site	E _{ad} [eV]	$q_K(\Delta e)$	
Fe-terminated	4-fold hollow	-2.45	0.82	
	3-fold hollow	-2.48	0.86	
	Fe-Fe bridge	-2.45	0.82	
	Fe top	-2.21	0.78	
C-terminated	3-fold hollow	-2.37	0.80	
	Fe-C bridge	-2.45	0.82	
	C top	-2.46	0.81	

Temperature (K)		site				
		χ-Fe ₅ C ₂			FeaOa	
		I (8f)	II (8f)	III (4e)	10203	
4.2	$H_{hf}(\mathrm{kO_e})$	255.45	216.03	126.63	530.35	
	δ (mm/s)	0.26	0.16	0.21	0.41	
	$E_Q (\mathrm{mm/s})$	0.02	0.02	0.01	0.11	
	Area (%)	35.38	34.32	17.92	12.38	
	$H_{hf}(\mathrm{kO_e})$	218.39	183.23	109.59	-	
295	δ (mm/s)	0.14	0.04	0.06	0.19	
	$E_Q (\text{mm/s})$	0.02	0.01	0.04	0.79	
	Area (%)	33.17	36.65	17.74	12.44	

Table S2 Mössbauer parameters of K-free χ -Fe₅C₂/charcoal catalyst.

 H_{hf} : hyperfine magnetic field; δ : isomer shift (all the isomer shifts are referred to α -Fe at 295K); E_Q : 5 quadrupole shift.

10

15

20

25

Table S3. Hydrocarbon product distributions (wt%) for each sample.

Catalyst	V. f.	K/Fe	K/Fe	K/Fe	K/Fe
Product	K-Iree	= 0.025	= 0.050	= 0.075	= 0.100
CH ₄	38.5	23.8	11.5	10.6	9.1
lower (C_2 - C_4) olefins	10.2	15.7	24.7	23.8	23.1
lower (C ₂ -C ₄) paraffins	43.8	26.7	8.9	7.8	5.0
C_5 - C_{12} (gasoline)	5.3	27.8	34.5	34.4	33.9
C_{13} - C_{18} (diesel)	1.4	4.1	10.4	11.6	13.0
C_{19+} (wax)	0.8	2.0	10.0	11.8	15.9