Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2014

Electronic Supplementary Information

4,4'-biphenyldicarboxylate sodium coordination compounds as an anode for Na-ion batteries

Aram Choi, ^{‡a}, Yun Kyeong Kim^{‡b}, Tae Kyung Kim^b, Mi-Sook Kwon^a, Kyu Tae Lee^{*a} and Hoi Ri Moon^{*b}

10

^a School of Energy & Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST)

100 Banyeon-ri, Eonyang-eup, Ulju-gun, Ulsan, 689-798, South Korea

E-mail: ktlee@unist.ac.kr

¹⁵ ^b School of Chemistry, Ulsan National Institute of Science and Technology (UNIST) 100 Banyeon-ri, Eonyangeup, Ulju-gun, Ulsan, 689-798, South Korea

E-mail: hoirimoon@unist.ac.kr

Compound	$[(Na_2bpdc) \cdot H_2O]_n$	[NaHbpdc] _n
formula	$Na_2C_{14}H_{10}O_5$	$Na_1C_{14}H_9O_4$
crystal system	Monoclinic	Triclinic
space group	P 21/c	P-1
fw	304.21	264.21
<i>a,</i> Å	27.720(6)	3.6550(7)
b, Å	5.8060(12)	11.214(2)
<i>c</i> , Å	7.5530(15)	12.985(3)
α, deg	-	89.55(3)
β , deg	92.70(3)	84.39(3)
γ, deg	-	88.78(3)
<i>V</i> , Å ³	1214.2(4)	529.54(18)
Ζ	4	2
$ ho_{calcd}, { m g~cm}^{-3}$	1.665	1.657
temp, K	95(2)	100(2)
λ, Å	0.64999	0.69999
μ , mm ⁻¹	0.185	0.156
goodness-of-fit (F^2)	1.037	1.003
<i>F</i> (000)	616	272
reflections collected	16907	5662
independent reflections	5223 [R(int) = 0.0448]	2827 [$R(int) = 0.0307$]
completeness to θ_{max} , %	98.6	93.2
data/parameters/restraints	5223/190/0	2827/179/0
θ range for data collection, deg	3.28-33.36	1.55-29.55
diffraction limits (h, k, l)	$-42 \le h \le 41, -8 \le k \le 8, -12 \le l \le 12$	$-5 \le h \le 5, -15 \le k \le 15, -18 \le l \le 18$
refinement method	Full-matrix least squares on F^2	Full-matrix least squares on F^2
$R_1, wR_2 \left[I > 2\sigma(I)\right]$	$0.0351^a, 0.0996^b$	$0.0623^a, 0.1720^c$
R_1 , wR_2 (all data)	0.0375^a , 0.1011^b	0.0748^a , 0.1859^c
largest peak, hole, eÅ ⁻³	0.870, -0.363	0.533, -0.887

Table S1 X-ray crystallographic data of [(Na₂bpdc)·H₂O]_n (*hyd*-Na₂bpdc) and [NaHbpdc]_n (NaHbpdc).

 ${}^{a}R = \Sigma ||F_{0}| - |F_{c}||/\Sigma |F_{0}|. {}^{b}wR(F^{2}) = [\Sigma w(F_{0}^{2} - F_{c}^{2})^{2}/\Sigma w(F_{0}^{2})^{2}]^{\frac{1}{2}} \text{ where } w = 1/[\sigma^{2}(F_{0}^{2}) + (0.0518P)^{2} + (0.7461)P], P = (F_{0}^{2} + 2F_{c}^{2})/3. {}^{c}wR(F^{2}) = [\Sigma w(F_{0}^{2} - F_{c}^{2})^{2}/\Sigma w(F_{0}^{2})^{2}]^{\frac{1}{2}} \text{ where } w = 1/[\sigma^{2}(F_{0}^{2}) + (0.1536P)^{2} + (0.0000)P], P = (F_{0}^{2} + 2F_{c}^{2})/3.$

Fig. S1 Rate performance of NaHbpdc, *hyd*-Na₂bpdc, and Na₂bpdc: voltage profiles of (a) NaHbpdc, (b) *hyd*-Na₂bpdc, and (c) Na₂bpdc.

Figure S2. Voltage profiles of super P carbon.

5

Figure S3. XRD patterns of NaHbpdc powders after storage in electrolytes for 3, 5, and 10 days.