Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2014

Electronic Supplementary Information

Efficient adsorption/photodegradation of organic pollutants from aqueous systems using Cu₂O nanocrystals as a novel integrated photocatalytic adsorbent

Hong-Yu Jing, ^b Tao Wen, ^c Cong-Min Fan, ^a Gui-Qi Gao, ^a Sheng-Liang Zhong, ^b and An-Wu Xu ^{*,a}

^aDivision of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at Microscale Department, University of Science and Technology of China, Hefei 230026, P.R. China

^bCollege of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P.R. China

^cInstitute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, P.R. China

* Corresponding author. Phone: +86-551-63602346; Fax: +86-551-63602346; E-mail:

anwuxu@ustc.edu.cn (A.W. Xu).

Fig. S1 XRD patterns of the samples obtained with different molar ratios of Cu and $CuCl_2$ reactants.

Fig. S2. HRTEM (a) image and EDS (b) spectrum of Cu₂O NCs.

Fig. S3. Linear fit of experimental data obtained using pseudo-second-order kinetic model at different organic pollutants, $pH = 5.0\pm0.1$, m/V = 0.1 g/L.

	Organic pollutants	Experimental values q_e (mg/g)	Calculated q_e (mg/g)	k_2 (g/(mg·min))	<i>R</i> ²
	НА	345.22	344.83	0.00350	0.9997
Cu ₂ O NCs	CR	84.88	90.91	0.00931	0.9998
	MO	87.53	87.72	0.00241	0.9999
CM Cu ₂ O	HA	26.37	26.39	0.0898	0.9999
	CR	27.61	27.78	0.01489	0.9994
	MO	4.97	4.98	1.13055	0.9996

Table S1. The experimental and calculated q_e values, pseudo-second-order rate constants, k_2 , and correlation coefficient values, R_2 .

Fig. S4. Digital pictures of HA, CR and MO adsorption on as-prepared Cu₂O NCs sample. NO. 1 vials are corresponded to HA, CR and MO solution, respectively. NO. 2 and 3 vials are taken at adsorption time of 10 minutes and 30 minutes, respectively.

Fig. S5. (a) Effect of solution pH on the adsorption of HA by Cu_2O NCs and (b) Zetapotential of Cu_2O NCs as a function of pH.

Fig. S6. Adsorption isotherms of CR, MO and HA on Cu_2O NCs (a) and CM Cu_2O (b).

Samples	Organic	Langmuir			Freundlich		
	pollutants	$q_{ m max} \ (m mg/g)$	<i>b</i> (L/mg)	R^2	k	п	<i>R</i> ²
Cu ₂ O NCs	НА	405.5	0.935	0.992	199.86	6.449	0.814
	CR	401.4	0.203	0.996	116.12	3.883	0.878
	МО	382.9	0.198	0.995	113.15	3.926	0.921
CM Cu ₂ O	HA	212.3	0.0576	0.983	45.62	3.521	0.833
	CR	52.9	0.164	0.963	20.23	5.250	0.911
	МО	22.4	0.044	0.934	3.59	2.955	0.798

Table S2. Parameters of the Langmuir and Freundlich isotherm model for organic pollutants on Cu₂O NCs and CM Cu₂O

Table S3. Comparison of maximum adsorption capacity of organic pollutantsadsorption on Cu_2O NCs with other different adsorbents.

Adsorbents	Adsorption capacity (mg \cdot g $^{-1}$)	Ref.
	НА	
Activated carbon	2.15	1
Fly ash	72	2
Coal fly	16.6	3
Mesoporous silica	120	4
Aminopropyl functionalized SBA-15	117	5
Cu ₂ O NCs	405.5	This study
	CR	
Activated carbon	52-189	6
waste Fe(III)/Cr(III) hydroxide	44.00	7
waste Orange peel	22.44	8
waste banana pith	20.29	9
Cu ₂ O NCs	401.4	This study
	ΜΟ	
Activated carbon	9.94	10
Orange peels	20.50	11
Hyper-cross-linked polymer	70.92	12
Cu ₂ O NCs	382.9	This study

Fig. S7 XRD patterns (a) and Cu $2p_{3/2}$ XPS spectra (b) of CM Cu₂O and Cu₂O NCs.

Fig. S8. Photodegradation of CR (a) and MO (c) over Cu₂O NCs and CM Cu₂O under visible light irradiation, respectively. UV–Vis spectra of CR (b) and MO (d) in aqueous Cu₂O NCs dispersions as a function of irradiation time with visible light irradiation ($\lambda \ge 400$ nm).

Fig. S9. Photocatalytic degradation reaction kinetics of HA, CR and MO over Cu₂O

NCs, respectively.

Fig. S10. Photodegradation (a) and photocatalytic degradation reaction kinetics (b) of TC over Cu_2O NCs under visible light irradiation.

Fig. S11 The TOC removal curve of HA photocatalytic degradation by Cu₂O NCs.

Fig. S12 The UV–Vis diffuse reflectance spectra of Cu_2O NCs and after HA adsorption.

Fig. S13. (a) Digital pictures of the natural groundwater well; (b) the color of the groundwater sample; (c) the characterization of NOM by excitation emission matrix fluorescence spectroscopy and (d) by high performance size exclusion chromatography.

References

- 1 J. P. Chen and S. Wu, J. Colloid Inter. Sci., 2004, 280, 334-342.
- 2 S. Wang and Z. H. Zhu, J. Colloid Inter. Sci., 2007, 315, 41-46.
- 3 S. Wang, Q. Ma and Z. H. Zhu, Fuel, 2008, 87, 3469-3473.
- 4 F. Basarir, N. Cuong, W.K. Song and T.H. Yoon, *Macromol. Symp.*, 2007, **249**, 61-66.

5 Q. Tao, Z. Xu, J. Wang, F. Liu, H. Wan and S. Zheng, *Microporous Mesoporous Mater.*, 2010, **131**, 177-185.

- 6 E.L. Grabowska and G. Gryglewicz, Dyes Pigments, 2007, 74, 34-40.
- 7 C. Namasivayam, R. Jeyakumar and R.T. Yamuna, *Waste Manage.*, 1994, **14**, 643-648.
- 8 C. Namasivayam, N. Muniasamy, K. Gayathri, M. Rani, K. Ranganathan, *Bioresour.*, *Technol.*, 1996, **5**, 37-43.
- 9 C. Namasivayam and R.T. Yamuna, J. Chem. Technol. Biotechnol., 1992, 53, 153-157.
- 10 K. P. Singh, D. Mohan, S. Sinha, G. S. Tondon, D. Gosh, *Ind. Eng. Chem. Res.*, 2003, **42**, 1965-1976.
- 11 R. S. Juang, G. Annadurai, D. J. Lee, J. Hazard. Mater., 2002, 92, 263-274.
- 12 J. H. Huang, K. L. Huang, S. Q. Liu, A. T. Wang and C. Yan, *Colloids Surf. A*, 2008, **330**, 55-61.