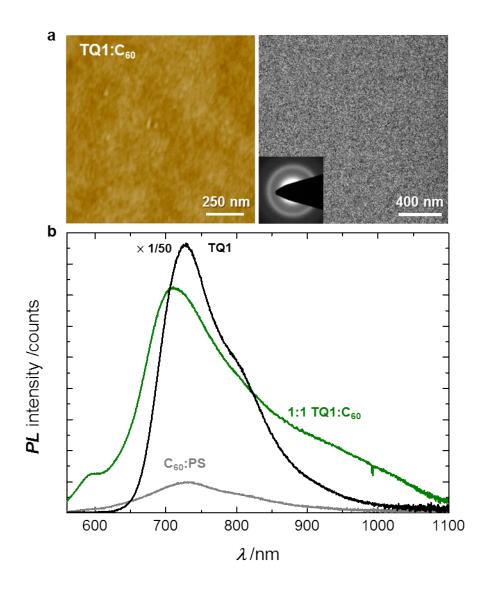
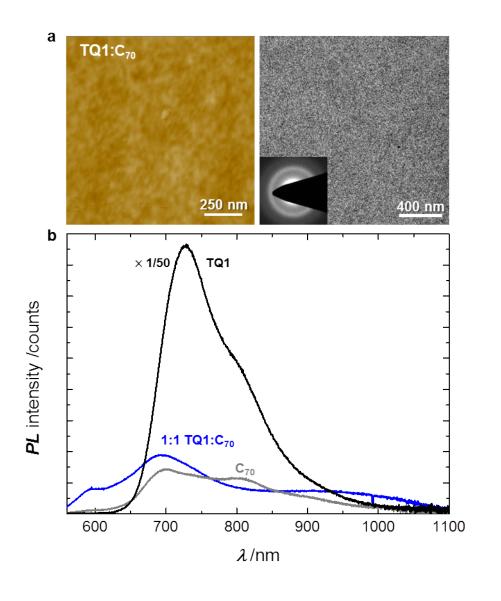
Supplementary Information

Neat C₆₀:C₇₀ buckminsterfullerene mixtures enhance polymer solar cell performance

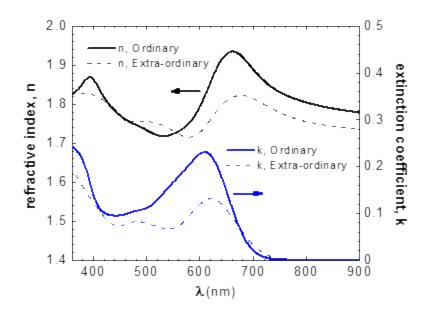

Amaia Diaz de Zerio Mendaza,¹ Jonas Bergqvist,² Olof Bäcke,³ Camilla Lindqvist,¹ Renee

Kroon,^{1,4} Feng Gao,² Mats R. Andersson,^{1,4} Eva Olsson,³ Olle Inganäs,² Christian Müller^{1,*}

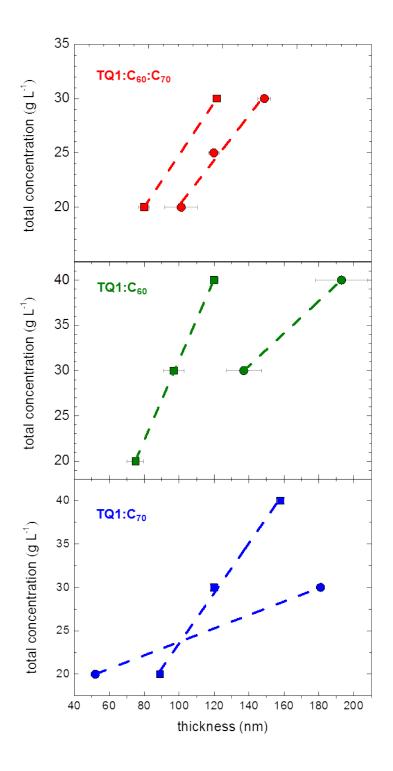
 ¹Department of Chemical and Biological Engineering/Polymer Technology, Chalmers University of Technology, 41296 Göteborg, Sweden
²Biomolecular and Organic Electronics, IFM, Linköping University, 58183 Linköping, Sweden
³Department of Applied Physics, Chalmers University of Technology, 41296 Göteborg, Sweden


⁴Ian Wark Research Institute, University of South Australia, Mawson Lakes, South Australia 5095, Australia

*e-mail: christian.muller@chalmers.se


Figur

e S1. (a) AFM height image and TEM bright field image of a $1:1 \text{ TQ1:C}_{60}$ film; inset: SAED pattern; (b) Photoluminescence (PL) spectra of a neat TQ1 film (black, signal reduced 50 times), $1:1 \text{ C}_{60}$:PS (grey) and $1:1 \text{ TQ1:C}_{60}$ (green). Note that neat C_{60} was spin coated together with polystyrene (PS) to ease film formation.



Figur

e S2. (a) AFM height image and TEM bright field image of a 1:1 TQ1:C₇₀ film; inset: SAED pattern; (b) Photoluminescence (PL) spectra of a neat TQ1 film (black, signal reduced 50 times), C_{70} (grey) and 1:1 TQ1:C₇₀ (blue).

Figure S3. Ordinary and extra-ordinary refractive index *n* and extinction coefficient *k* obtained by modelling variable-angle spectroscopic ellipsometry (VASE) spectra of a 225 nm thick 2:1:1 TQ1:C₆₀:C₇₀ film on a Si substrate with ~1 nm native oxide.

Figure S4. Active layer thickness as a function of total solution concentration for 2:1:1 $TQ1:C_{60}:C_{70}$ (red), 1:1 $TQ1:C_{60}$ (green) and 1:1 $TQ1:C_{70}$ (blue) for 1000 rpm (cubes) and 500 rpm (circles) spin-coating speeds.