Supporting information for

Fluorination of anatase TiO_2 towards titanium oxyfluoride $TiOF_2$: novel synthesis approach and proof of Li-insertion mechanism.

Nicolas Louvain,^{1,2*†} Zouina Karkar,^{1,2} Malika El-Ghozzi,^{1,2} Pierre Bonnet,^{1,2} Katia Guérin,^{1,2} Patrick Willmann³

¹Clermont Université, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand, BP 10448, F-63000 Clermont-Ferrand, France; ²CNRS, UMR 6296, Institut de Chimie de Clermont-Ferrand, F-63177 Aubière, France; ³Centre National d'Etudes Spatiales, Toulouse, France

Corresponding Author

E-mail address: nicolas.louvain@um2.fr. Telephone: +33 4 67 14 33 09. Fax: +33 4 67 14 33 04.

Present Address

+Institut Charles Gerhardt UMR CNRS 5253 (AIME), Université Montpellier 2, CC1502, place E. Bataillon, 34095 Montpellier cedex 5, France.

Figure S1. Schematic representation of *in situ* XRD environment-controlled cell (pressurized with argon) showing its core and parts (a), the mounted core inside its metallic alloy body (open here for display purposes but the only aperture through the body is at its bottom, where the core is inserted) and the kapton window allowing the X-ray (blue arrows) through (b), and the complete mounted cell viewed from the side (c), top (d) and front (e); the schematic model of the *in situ* cell is displayed over the real experimental model of the cell, shown installed on the X'Pert diffractometer (f); the connection between the cell and PC can be seen at the bottom at the image.

Figure S2. Indexing of XRD pattern of a crystalline residue obtained at the end of the fluorination of rutile TiO₂ (the red lines indicate theoretical peak positions of nickel titanium fluoride hydrate NiTiF₆; H₂O, PDF #00-025-0588)

Figure S3. Evolution of the absolute pressure versus temperature of rutile and anatase powders under a mixture of N_2/F_2 gases during the heating process towards 250 °C.

Table S1. Size calculation results obtained from XRD peaks full-width at half minimum (FWHM) for different powders of TiO_2 and $TiOF_2$ (instrumental width was estimated with single crystalline Si film).

	FWHM (°)	Beta (°)	2-Theta (°)	Size (nm)	Size (µm)
TiO ₂ anatase nano	0.43979	0.29591	25.35297	<mark>27.5</mark>	0.0275
TiO₂ anatase micro	0.19434	0.05046	25.35297	>150.0	>0.1500
TiO₂ rutile micro	0.14602	0.00214	27.44187	>150.0	>0.1500
Anatase-derived TiOF ₂	0.39334	0.24946	23.43117	<mark>32.5</mark>	0.0325

Figure S4. SEM images and EDX analyses of pristine (top left) and fluorinated (top right) rutile TiO₂; SEM images and EDX analyses of pristine (bottom left) and fluorinated (bottom right) anatase TiO₂.

Figure S₅. XRD of TiOF₂ after TG analysis up to 600 °C, compared with that of pristine TiO₂ powder (top); TG analysis of a stoichiometric mixture of Li₂CO₃ and TiOF₂ (bottom left) and the corresponding XRD pattern after TG analysis (bottom right); the XRD pattern is compared to simulated patterns of LiF (grey) and anatase TiO₂ (red).

Figure S6. Raman spectra of anatase TiO_2 and anatase-derived $TiOF_2$ powders (left) and of rutile TiO_2 and rutile-derived fluorinated TiO_2 powders (right)

Figure S7. Galvanostatic charge-discharge profiles for different $\rm Li/TiO_2$ cells cycled at C/20 between 3.8 and 1.2 V

Compound	Cycle	Eoc	$\mathbf{Q}_{\mathbf{red}}$	E _{1/2} (red)	$\mathbf{Q}_{\mathbf{ox}}$	$E_{1/2}(ox)$	C.E.
Migro apatago (a)	1 st	3.138 V	154 mAh g-1	1.766 V	132 mAh g-1	1.875 V	85.7%
Micro allatase (a)	4 th	-	106 mAh g-1	1.757 V	90 mAh g¹	1.893 V	84.9%
Micro	1 st	3.087 V	18 mAh g-1	1.331 V	15 mAh g-1	1.853 V	83.3%
rutile (c)	4 th	-	13 mAh g-1	1.328 V	12 mAh g-1	1.827 V	92.3%
Nano anatase (b)	1 st	3.159 V	165 mAh g-1	1.745 V	139 mAh g-1	1.876 V	84.2%
Indito allatase (D)	4 th	-	136 mAh g-1	1.745 V	127 mAh g-1	1.887 V	93.4%
0,00 0,10 4,0 3,8 3,6 3,4 3,2 3,0 3,4 3,2 3,0 3,4 3,2 3,0 3,0 3,2 3,0 3,0 3,2 3,0 3,0 3,2 3,0 3,0 3,2 3,0 3,0 3,2 3,0 3,0 4,0 3,2 3,0 4,0 3,2 4,0 3,2 4,0 3,0 4,0 3,2 4,0 3,0 4,0 4,0 4,0 4,0 4,0 4,0 4,0 4,0 4,0 4	X LI 0,19 0,29 8	0,38 0,48 x = 0.32 $x = 0.40E_{oc} = 3.12^{\circ}UntE_{oc} = 3.17^{\circ}UnE_{oc} = 3.199Un$	0,57 7 V til 2,5 V 7 V til 2,0 V til 1,2 V	# TiO ₂ Anatase IC thombohedral Jntil 1.2 V Jntil 2.0 V Jntil 2.5 V Helaxed	SD 9855	004	
		400 405	150 15	20 25	30 35 40	45 50 55	60 65
0 25	Capacity (m	Ah g ⁻¹)	150		Angle (26	1)	

Figure S8. Galvanostatic discharge (at C/10) curves of three Swagelok-type cells of nanocrystals of $TiOF_2$ powders stopped at 2.5, 2.0 and 1.2 V (left) and their corresponding XRD patterns (right); the relaxed curve (i.e. not discharged) is shown for comparison. Miller indices for cubic (black) and rhombohedral (blue) $TiOF_2$ cells are noted, and the black downward arrows indicate the theoretical peak positions of LiF that are clearly absent from these four patterns.

Figure S9. XRD patterns, showing the (001) peak of the cubic $TiOF_2$ phase, collected during the relaxation (left) and the first discharge (right) of the *in operando* XRD/electrochemistry measurement.

Figure S10. Evolution of the normalized intensities of the (001) and (111) peaks of the TiOF₂ phase during the *in operando* XRD/electrochemistry measurement of the first charge-discharge cycle.

Figure S11. Profile matching refinement, using rhombohedral symmetry (*R*-3*c*), of the electrochemically lithiated TiOF₂ phase obtained at the end of the first discharge (at E = 1.2 V) during the *in operando* XRD/electrochemistry measurement. The peaks coming from the sample holder (made of an iron-nickel alloy) were removed from the refinement (42.5-47°).

Table S3. Profile matching results - Fullprof suite

No. H	K	L Mult	Hw	2theta	Icalc	Iobs	Sigma	d-hkl	
1 0	1	2 6	0.6325	23.803	873.6	1207.6	462.637	3.735026	
2 1	0	4 6	0.8444	1 33.401	136.2	24.5	26.797	2.680492	
31	1	0 6	0.8674	34.421	137.9	125.7	17.373	2.603324	
4 1	1	3 12	0.9978	40.108	355.4	492.4	190.420	2.246350	
5 0	0	6 2	1.0084	40.561	146.8	114.8	26.320	2.222292	
6 2	0	2 6	1.0488	42.282	0.0	0.0	0.040	2.135729	
7 0	2	4 6	1.2042	48.719	582.7	557.5	28.924	1.867513	
BRAGG	R-Fact	ors and	weight	fractions for Pa	ttern # 1				
=> Pha	se: 1	Red	duced Ti	DF2					
=> Bra	gg R-f	actor:	25.1	Vol: 313.0	18(0.636)	Fract(%):	0.00(0.00)	
=> Rf-	factor	= 15.2		ATZ:	0.000	Brindley:	1.0000		
SYMBOL	IC NAM	ES AND F	'INAL VA	LUES AND SIGMA O	F REFINED H	PARAMETERS:			
-> Pa	ramete	r number	1 :	Bck 0	pat1 2	2640.8350	(+/-	14.674967)
-> Pa	ramete	r number	2:	Bck 1	 pat1 1	254.4122	(+/-	156.83017)
-> Pa	ramete	r number	: 3:	Bck 2	 pat1 1	2646.334	(+/-	486.01379)
-> Pa	ramete	r number	4 :	Bck 3	 pat1 -4	18616.922	(+/-	3064.5144)
-> Pa	ramete	r number	: 5:	Bck 4	 pat1 -1	170300.03	(+/-	8907.5254)
-> Pa	ramete	r number	6:	Bck 5	pat1 -1	13095.80	(+/-	6845.3501)
-> Pa	ramete	r number	. 7:	Scale_ph1	pat1 0.	97557384	(+/-	0.82320996E-01)
-> Pa	ramete	r number	: 8 :	Cell_A_ph1	pat1 5	5.2064366	(+/-	0.53666928E-02)
-> Pa	ramete	r number	9:	U-Cagl_ph1	_pat1 5	5.4337010	(+/-	2.9167769)
-> Pa	ramete	r number	10 :	V-Cagl_ph1	_pat1 0.	70955831	(+/-	0.71708304)
-> Pa	ramete	r number	: 11 :	Cell_C_ph1	_pat1 1	13.333917	(+/-	0.18860878E-01)
	ramete	r number	: 12 :	SyCos	_pat1 0.	24469224	(+/-	0.42321835E-01)
-> Pa		,	- 13 -	Bover ph1	pat1 -1	10.000009	(+/-	1.3600371)
-> Pa -> Pa	ramete	r number	J .	Dotor_pmi					
-> Pa -> Pa	ramete	r number	. 15.	Dotor_pini					
-> Pa -> Pa	ramete	r number	. 15 .						