Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2014

## **Multifunctional Graphene Sheet-Nanoribbon Hybrid Aerogels**

Chunhui Wang,<sup>1</sup> Xiaodong He,<sup>1</sup> Yuanyuan Shang,<sup>1, 2</sup> Qingyu Peng,<sup>1</sup> Yuyang Qin,<sup>1</sup> Yanbing Yang,<sup>2</sup>

Enzheng Shi,<sup>2</sup> Shiting Wu,<sup>2</sup> Wenjing Xu,<sup>2</sup> Shanyi Du<sup>1</sup>, Anyuan Cao,<sup>2\*</sup> Yibin Li<sup>1\*</sup>

<sup>1</sup>Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, P.

R. China

<sup>2</sup>Department of Materials Science and Engineering, College of Engineering, Peking University,

Beijing 100871, P. R. China

\*Corresponding authors. Email: liyibin@hit.edu.cn, anyuan@pku.edu.cn

## **Supplementary Information:**

- **1.** Figure S1. Nitrogen sorption isotherms and pore size distribution of GO-GNR aerogels.
- 2. Figure S2. a) TEM image of GNR-coated graphene sheet. b) SEM of PPy coated aerogels. c) FT-IR spectra of corresponding materials. d) XRD spectra of GO-GNR aerogels before and after chemical reduction.
- 3. Figure S3. a, b) XPS spectra of GO-GNR aerogels before and after chemical reduction.
- 4. Table S1. Supercapacitive performance of typical graphene based aerogel
- 5. Figure S4. a, b) CVs of 16.4 wt% and 49.1 wt% PPy loaded GO-GNR electrode in 2 M KCl. b) Calculated specific capacitances of the different PPy loaded GO-GNR electrode.



Figure S1. Nitrogen sorption isotherms and pore size distribution of GO-GNR aerogels.



**Figure S2.** a) TEM image of GNR-coated graphene sheet. b) SEM of PPy coated aerogels. c) FT-IR spectra of corresponding materials. d) XRD spectra of GO-GNR aerogels before and after chemical reduction.



Figure S3. a, b) XPS spectra of GO-GNR aerogels before and after chemical reduction.

| Materials                          | Current density | Electrod | Specific          | Ref.      |
|------------------------------------|-----------------|----------|-------------------|-----------|
|                                    | and/or scan     | e        | Capacitance (F/g) |           |
|                                    | rate            | system   |                   |           |
| GO-GNR aerogel                     | 2-100 mV/s      | Three    | 256-121           | This work |
| GO-GNR aerogel @PPy                | 2-100 mV/s      | Three    | 537-218           | This work |
| MWCNTs/Graphene                    | 0.1-100 A/g     | Two      | 85-53             | S1        |
| aerogel                            |                 |          |                   |           |
| N-doped Graphene aerogel           | 1-100 A/g       | Three    | 484-415           | S2        |
| Graphene foam                      | 1.5 A/g         | Two      | 151               | S3        |
| PPy@Graphene foam                  | 1.5 A/g         | Two      | 350               | S3        |
| Graphene aerogel                   | 25 mV/s         | Three    | 25                | S4        |
| MnO <sub>2</sub> @Graphene aerogel | 2-25 mV/s       | Three    | 410-312           | S4        |
| Graphene aerogel@Ni Foam           | 2-20 A/g        | Three    | 366-186           | S5        |

## Table S1. Supercapacitive performance of typical graphene based aerogel



Figure S4. a, b) CVs of 16.4 wt% and 49.1 wt% PPy loaded GO-GNR electrode in 2 M KCl. c) Calculated specific

capacitances of the different PPy loaded GO-GNR electrode.

## References

- [S1] Xu, Z. W.; Li, Z.; Holt, C. M. B.; Tan, X. H.; Wang, H. L.; Amirkhiz, B. S.; Stephenson, T.; Mitlin, D. Electrochemical Supercapacitor Electrodes from Sponge-Like Graphene Nanoarchitectures with Ultrahigh Power Density. *J.Phys.Chem.Lett.* 2012, *3*, 2928-2933.
- [S2] Zhao, Y.; Hu, C. G.; Hu, Y.; Cheng, H. H.; Shi, G. Q.; Qu, L. T. A Versatile, Ultralight, Nitrogen-Doped Graphene Framework. *Angew. Chem. Int. Ed.* 2012, *51*, 11371-11375.
- [S3] Zhao, Y.; Liu, J.; Hu, Y.; Cheng, H. H.; Hu, C. G.; Jiang, C. C.; Jiang, L.; Cao, A. Y. Liangti Qu. Highly Compression-Tolerant Supercapacitor Based on Polypyrrole-Mediated Graphene Foam Electrodes. *Adv. Mater.* 2013, 25, 591-595.
- [S4] Wang, C. C.; Chen, H. C.; Lu, S. Y. Manganese Oxide/Graphene Aerogel Composites as An Outstanding Supercapacitor Electrode Material. *Chem. Eur. J.* 2013, 19, 1-8.
- [S5] Ye, S. B.; Feng, J. C.; Wu. P. Y. Deposition of Three-Dimensional Graphene Aerogel On Nickel Foam as A Binder-Free Supercapacitor Electrode. ACS Appl. Mater. Interfaces. 2013, 5, 7122-7129.