Supplementary Information

for

SnO₂ Nanoparticles Embedded in 3D Nanoporous/Solid Copper Current Collectors for High-performance Reversible Lithium Storage

Chao Hou, Xiang-Mei Shi, Chen-Xu Zhao, Xing-You Lang* Lin-Lin Zhao, Zi Wen,

Yong-Fu Zhu, Ming Zhao, Jian-Chen Li, Qing Jiang*

Key Laboratory of Automobile Materials (Jilin University), Ministry of Education,

and School of Materials Science and Engineering, Jilin University, Changchun

130022, China

* Correspondence and requests for materials should be addressed to X.Y.L. (email: xylang@jlu.edu.cn) or Q.J. (email: jiangq@jlu.edu.cn).

Figure S1. SEM image of cross-section of $Cu/Cu_{30}Mn_{70}$ films.

Figure S2. SEM-EDS mapping of Cu, Sn, and O elements in the NP Cu/SnO_2 composite, showing the SnO_2 nanoparticles are uniformly deposited on the Cu ligaments and nanopore channels.

Figure S3. Typical XPS survey spectrum for S/NP Cu/SnO₂ film.

Figure S4. XRD pattern of SnO₂ powder and standard XRD pattern of SnO₂.

Figure S5. Cross-section SEM image of AB/SnO₂ electrode.

Figure S6. A real capacity retention comparison between S/NP Cu/SnO₂, AB/SnO₂

electrodes and S/NP Cu skeleton.

Figure S7. Charge/discharge profiles of the AB/SnO_2 electrode at various current densities.

Figure S8. Local densities of states for SnO_2 supported by (a) Cu and (b) carbon substrates.

Figure S9. Cross-section SEM image of S/NP Cu/SnO₂ electrode after 100 cycles.